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Window function

From Wikipedia, the free encyclopedia

In signal processing, window function (also known as aapodization function or tapering functionl!) is a
mathematical function that is zero-valued outsifisoone chosen interval. For instance, a functi@t ihconstant
inside the interval and zero elsewhere is calleetgangular windowwhich describes the shape of its graphical
representation. When another function or wavefoata@eequence is multiplied by a window functior pnoduct is
also zero-valued outside the interval: all thdefsis the part where they overlap, the "view thgb the window".

In typical applications, the window functions usee non-negative, smooth, "bell-shaped” cuRleRectangle,
triangle, and other functions can also be usedofergeneral definition of window functions does require them to
be identically zero outside an interval, as longhasproduct of the window multiplied by its argumés square
integrable, and, more specifically, that the fumetjoes sufficiently rapidly toward zelfd.
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Applications

Applications of window functions include spectrabdysis/modification/resynthed§,the design of finite impulse
response filters, as well as beamforming and amtei@sign.

Spectral analysis

The Fourier transform of the function aesis zero, except at frequencytHowever, many other functions and
waveforms do not have convenient closed-form tangss. Alternatively, one might be interested initlspectral
content only during a certain time period.

In either case, the Fourier transform (or a sintlansform) can be applied on one or more finiterwals of the
waveform. In general, the transform is applied® product of the waveform and a window functionyAvindow
(including rectangular) affects the spectral esten@mputed by this method.

Windowing

Windowing of a simple waveform like cag causes its Fourier transform to develop non-zatoes (commonly
called spectral leakage) at frequencies other éhdrhe leakage tends to be worst (highest) neand least at
frequencies farthest from.

If the waveform under analysis comprises two sirdssof different frequencies, leakage can interigita the ability
to distinguish them spectrally. If their frequerscge dissimilar and one component is weaker, ifatage from the
stronger component can obscure the weaker onesempee. But if the frequencies are similar, lealcgerender
themunresolvableeven when the sinusoids are of equal strengthrdttangular window has excellent resolution
characteristics for sinusoids of comparable stitgrmit it is a poor choice for sinusoids of dispar@mplitudes. This
characteristic is sometimes describedbasdynamic range

At the other extreme of dynamic range are the wivglwith the poorest resolution asehsitivity, which is the ability
to reveal relatively weak sinusoids in the presesfaadditive random noise. That is because theenmieduces a
stronger response with high-dynamic-range winddwas twith high-resolution windows. Therefore,
high-dynamic-range windows are most often justifredideband applicationsvhere the spectrum being analyzed i
expected to contain many different components abua amplitudes.
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In between the extremes are
moderate windows. such as “Leakage” from a sinusoid (rectangular window)

H ’ D | | T I I
Hamming and Hann. They are : ‘ : : -
commonly used imarrowband
applications such as the
spectrum of a telephone channel.
In summary, spectral analysis
involves a trade-off between
resolving comparable strength
components with similar
frequencies and resolving
disparate strength components
with dissimilar frequencies. That
trade-off occurs when the 40
window function is chosen.
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Discrete-time signals .50

When the input waveform is
time-sampled, instead of 0
continuous, the analysis is usually

done by applying a window

function and then a discrete Figure 1: Zoomed view of spectral leakage

Fourier transform (DFT). But the

DFT provides only a sparse

sampling of the actual discrete-time Fourier transf(DTFT) spectrunkigure 1 shows a portion of the DTFT for a
rectangularly-windowed sinusoid. The actual frequeof the sinusoid is indicated as "0" on the hamtal axis.
Everything else is leakage, exaggerated by theladogarithmic presentation. The unit of frequerc"DFT bins";
that is, the integer values on the frequency axigespond to the frequencies sampled by the DFTh&digure
depicts a case where the actual frequency of thessid coincides with a DFT sample, and the maxinate of the
spectrum is accurately measured by that sample nWmaisses the maximum value by some amount (4p bin),
the measurement error is referred ta@adl oping loss (inspired by the shape of the peak). For a knaeguency,
such as a musical note or a sinusoidal test sigretthing the frequency to a DFT bin can be preaed by choices
of a sampling rate and a window length that resalts integer number of cycles within the window.

-4 -3 2 -1 0 1 2 3 4 g B 7
DFT bins

Noise bandwidth

The concepts of resolution and dynamic range termktsomewhat subjective, depending on what theisisetually
trying to do. But they also tend to be highly ctated with the total leakage, which is quantifiahitas usually
expressed as an equivalent bandwidth, B. It caihdueght of as redistributing the DTFT into a recjalar shape with
height equal to the spectral maximum and widfR%. 1] The more the leakage, the greater the bandwiti. |
sometimes calledoise equivalent bandwidtir equivalent noise bandwidtbecause it is proportional to the average
power that will be registered by each DFT bin wheninput signal contains a random noise compofuerns just
random noise). A graph of the power spectrum, ayegtaver time, typically reveals a fladise floor caused by this
effect. The height of the noise floor is proportbto B. So two different window functions can puceé different

noise floors.

Processing gain and losses

In signal processing, operations are chosen toowgpsome aspect of quality of a signal by explgitime differences
between the signal and the corrupting influencelsel\the signal is a sinusoid corrupted by addit@relom noise,
spectral analysis distributes the signal and nmiseponents differently, often making it easier ébett the signal's
presence or measure certain characteristics, suamplitude and frequency. Effectively, the sigoatoise ratio
(SNR) is improved by distributing the noise uniféymvhile concentrating most of the sinusoid's ggearound one
frequencyProcessing gaifis a term often used to describe an SNR improvénié® processing gain of spectral
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analysis depends on the window
function, both its noise bandwidth Processing losses for sinusoids in additive noise
(B) and its potential scalloping

) Rectangular window
loss. These effects partially offset, 2

I I T
because windows with the least i i
scalloping naturally have the most =~ 2 S}
leakage. 2 10} X dB X-3.92 dB

3

The figure at right depicts the -15¢
effects of three different window
functions on the same data set, Mo scallop loss M aximum scallop loss
comprising two equal strength Hann winidew
sinusoids in additive noise. The ol T 1 T
frequencies of the sinusoids are
chosen such that one encounters = 4 o
no scalloping and the other 2 10} X-1.76 dB X-3.18 dB
encounters maximum scalloping. ° 15
Both sinusoids suffer less SNR loss |

under the Hann window than
under the Blackman—Harris

window. In general (as mentioned Blackman-Harris
earlier), this is a deterrent to using 0t
high-dynamic-range windows in
low-dynamic-range applications.

v

- frequency

10! X-3.01 dB X-3 85 dB

daecibels

Filter design

Windows are sometimes used in Mo scallop loss Maximum scallop loss
the design of digital filters, in
particular to convert an "ideal"
impulse response of infinite
duration, such as a sinc function,
to a finite impulse response (FIR)

This figure compares the processing losses of thineggow functions for sinusoidal
inputs, with both minimum and maximum scallopingdo

filter design. That is called the Two 8-point Bartlett window functions
window methodfll’] ’ -
Rectangular window g 7

i i - “, ¢ Matlab “periodic”
applications 0.754 . . {"DFT-eE:n"]
Analysis of transients o 7 .

0.51 .« .

When analyzing a transient signal L :
in modal analysis, such as an i )
impulse, a shock response, asine 251 5 Matlab "symmetric” — * “u
burst, a chirp burst, or noise burst, /4 ‘
where the energy vs time
distribution is extremely uneven, 0 i p : x £ . " \
the rectangular window may be 0 1 2 3 4 5 8 7 8
most appropriate. For instance, B

when most of the energy is located
at the beginning of the recording, a Two different ways to generate 8-point triangulandgew functions for spectral analysis

non-rectangular window applications. MATLAB calls them "symmetric" and Yjmaic". The latter is also
attenuates most of the energy, historically called "DFT Even".

degrading the signal-to-noise

ratio [®]
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Harmonic analysis

) ) Two B-point Hann window functions
One might wish to measure the
harmonic content of a musical . .
note from a particular instrument o %
or the harmonic distortion of an 0.75 4  +— Matlab “periodic”
amplifier at a given frequency. ' ("DF T-even”)
Referring again té-igure 1, we . .
can observe that there is no 05 p a
leakage at a discrete set of
harmonically-related frequencies
sampled by the DFT. (The spectral p 25 Matlab “symmetnc” —
nulls are actually zero-crossings, p b
which cannot be shown on a
logarithmic scale such as this.) -
This property is unique to the 0 1 2 3 4 9 6 7 8
rectangular window, and it must be — N —
appropriately configured for the
signal frequency, as described
above.

o]
[ 3

Two different ways to generate an 8-point Hann wimdequence.

Symmetry "Spectral leakage" from three 8-point triangular windows

Window functions generated for
digital filter design are symmetrical
sequences, usually an odd length 20
with a single maximum at the

center. Windows for DFT/FFT =
usage, as in spectral analysis or
time-frequency filtering, are often
created by deleting the right-most 50
coefficient of an odd-length,
symmetrical window, making their
discrete frequency spectrum 70
purely real®] These are known as
periodicl® or DFT-even[*] Such 4 3 2 1 0 1 2 3
a window is generated by the

MATLAB function
hann(512,'periodic’) for instance. = Comparing the discrete-time Fourier transformssyfiimetric” and "periodic” windows.

To generate it with the formula in  The triangular form was chosen for its non-zero-goitits, one of which is discarded in
this article (below), the window the periodic version, with a noticeable performatiegradation. Parameter L is the width
length (N) is 513, and the 513th of the base of the triangle in units of the sanpterval. Parameter N is 8.

coefficient of the generated

sequence is discarded.

L=N+1 periodic

decibals
b
(=)

«— L=N+1 symmetric

OFT bins

For a window function with zero-valued end-poimisleting one or both end-points has no effect ®DEFT. But the
function designed for N+1 samples, instead of ididglly has a slightly narrower main lobe, slightigher sidelobes,
and a slightly lower noise bandwidth. Similarly)eteng both zeros from a function designed for N&nples further
amplifies those effects. For a window function wiitn-zero end-points, such as triangular or Pojsseleting one of
them can result in higher sidelobes and noise battlwith little or no main lobe improvement.

There is also a cosmetic result of truncating ad Nample symmetric window. It happens when we sani@ DTFT
only at intervals 0% cycles/sample, which is the effect of an N-poiffTlDThe baseline width of the N+1 sample

window with zero-valued end-points is just N sampkervals. That usually means the DTFT zero-cragssiwhich
create the fine-grained sidelobe structure awam fitee main lobe, occur at an interval that asyniqady

5 of 26 21.12.2016 05:5



https://en.wikipedia.org/wiki/Window_functit Window function - Wikipedi

approaches the same interval as
the DFT samples. When that "Spectral leakage” from two 8-point Poisson windows
allows most of the DFT samples to %
occur at or near the zero-crossings,

it creates an illusion of little or no 10
spectral leakage. But such a plot

only reveals the leakage into the =0
DFT bins from a sinusoid whose

frequency is also an integer DFT
bin. The unseen sidelobes reveal o~
the leakage to expect from

sinusoids at other frequenciéd. 50
That is why it's important to

present the continuous function (as
seen below) and choose a window

that suppresses the sidelobes to an
acceptable level.

Perodic

-30

decibels

+— Symmaetric

OFT bins

Comparing the discrete-time Fourier transformssgfrimetric” and "periodic" windows.
The Poisson form was chosen for its non-zero eikpane of which is discarded in the
periodic version, with a noticeable performanceraeation.

A list of window
functions

Terminology

= N represents the width, in samples, of a discrete;tsymmetrical window functiom[n], 0 <n < N — 1.
When N is an odd number, the non-flat windows hagegular maximum point. When N is even, they have
double maximum.

= It is sometimes useful to expresgn] as a sequence of samples ofldggedversion of a zero-phase
(https://ccrma.stanford.edu/~jos/filters/Zero_Ph&dleers_Even_Impulse.html) function

N-1
wn] = wy (R—T),OSnSN—l, [13]

= Each figure label includes the corresponding neggivalent bandwidth metri@},["°t 1lin units ofDFT bins

B-spline windows

B-spline windows can be obtainedkafld convolutions of the rectangular window. Theglude the rectangular
window itself = 1), the triangular windovwk(= 2) and the Parzen window £ 4)[14 Alternative definitions sample
the appropriate normalizeég®tspline basis functions instead of convolving diseségme windows. Acth orderB-spline
basis function is a piece-wise polynomial functadrdegreek—1 that is obtained bi-fold self-convolution of the
rectangular function.

Rectangular window

The rectangular window (sometimes known ashitvecar or Dirichlet window) is the simplest window, equivalent to
replacing all bulN values of a data sequence by zeros, making itaaggsethough the waveform suddenly turns on
and off:

w(n) =1.

Other windows are designed to moderate these suttdarges, which reduces scalloping loss and imgrdyeamic
range, as described above (Window function#Speatralysis).

The rectangular window is the 1st ordespline window as well as the Oth power cosine wind
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Triangular window

Triangular windows are given by:

N-1
n—=

L ’
2

whereL can beN,[1H16] N+1 [17] or

N-1.8 The last one is also known as

Bartlett window or Fejér window.

All three definitions converge at large

N.

The triangular window is the 2nd
orderB-spline window and can be
seen as the convolution of two N/2
width rectangular windows. The

Rectangular window

samples

Rectangular windowB = 1.000015]

Triangular window

0 N-1
samples

decibels

Window function - Wikipedi

Fourier transform

-40-30-20-10 0 10 20 30 40

0
-10
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-40
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-70
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-90
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-110
-120
-130

decibels

bins

Fourier transform

-40-30-20-10 0 10 20 30 40

bins

Triangular window (witH.=N-1) or equivalently the Bartlett windo\;= 1.333315]

Fourier transform of the result is the squared eslof the transform of the half-width rectangulamdow.

Parzen window

The Parzen window, also known as

thede la Vallée Poussin windoytll
is the 4th ordeB-spline window
given by:
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Parzen window

samples

Parzen windowB = 1.92(11]

0
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Fourier transform

I

-40-30-20-10 0 10 20 30 40

bins
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1-6(5) (
N/2

(1= 35)
N/2)?

Other polynomial windows

w(n) =

Welch window

The Welch window consists of a

single parabolic section:
w(n)=1-
17

The defining quadratic polynomial

reaches a value of zero at the samples
just outside the span of the wind

Generalized Hamming windows

Welch window

I

samples

Welch window;B = 1.20[11]

Generalized Hamming windows are of the form

2mn
N-1

)

wn)=a-p4 cos(

N-1

0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130

decibels

-40-30-20-10 0 10

Window function - Wikipedi

Fourier transform

20 30 40
bins

The periodic/DFT-everfiorms have only three non-zero DFT coefficientd ahare the benefits of a sparse frequenc
domain representation with higher-order generalzesine windows.

Hann (Hanning) window

The Hann window named after Julius
von Hann and also known as the
Hanning (for being similar in name
and form to the Hamming window),
von Hann and theraised cosine
window is defined by (witthavfor

the haversine functiort}?!
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Hann window

|

samples

Hann windowB = 1.500015]

-10
-30

decibels

-40-30-20-10 0 10 20 30

Fourier transform

40
bins
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w(n) = 0.5 (1 - cos(;”_"l )) - hav( ;ﬂ-_nl)

The ends of the cosine just touch zero, so thelshies roll off at about 18 dB per octal¢d.

Hamming window

The window with these particular

W. Hamming. The window is 1
optimized to minimize the maximum 0.9
(nearest) side lobe, giving it a height 0.8
of about one-fifth that of the Hann 0.7 o
50.6 W
window/211122] 20’5 o -
™" v
£0.4 <
m
0.3 -
0.2 -100
0.1 -120

-40-30-20-10 0 10 20 30 40
samples bins

Hamming windowg = 0.53836 ang@ = 0.46164B = 1.37. The original Hamming
window would haver = 0.54 ang? = 0.46:B = 1.36281°]

wn)=a—-p4 cos(;inl),

with
a=054, =1—a =046,

instead of both constants being equal to 1/2 itH&aen window. The constants are approximationsabfes

o = 25/46 angb = 21/46, which cancel the first sidelobe of thenRlavindow by placing a zero at frequency
5n/(N — 1)1 Approximation of the constants to two decimal psubstantially lowers the level of sideloBékto
a nearly equiripple conditidd?! In the equiripple sense, the optimal values ferabefficients are = 0.53836 and

B = 0.46164221[23]

= zero-phase version:

wo (n) def w(n + % )

2mn
=0.54 + 0.46
+ CcOoS ( N 1)

Higher-order generalized cosine windows

Windows of the form

w(n) = i g cos ( 2’;\';")

k=0

have only X + 1 non-zero DFT coefficients, which makes themdyohoices for applications that require windowing
by convolution in the frequency-domain. In thoselmations, the DFT of the unwindowed data vecsaneeded for

a different purpose than spectral analysis. (semrl@p-save method). Generalized cosine windows juthtwo

terms K = 1) belong in the subfamily generalized Hammingdews.
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Blackman windows

Blackman windows are defined as:
Blackman window Fourier transform

o
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130

-40-30-20-10 0 10 20 30 40

samples bins

decibels

Blackman windowy = 0.16:B = 1.73[11]

w(n) = ap — a; cos 2mn + ay cos dmn
SN ) TP N -

l—-«
2 )

1
ag = al=§; az = ~

2

By common convention, the unqualified teBiackman windowefers to Blackman's "not very serious proposal’ o
o =0.16 6y = 0.42,a; = 0.5,a, = 0.08), which closely approximates the "exactRtaan"[?4 with
ap = 7938/18608: 0.42659a; = 9240/18608- 0.49656, ana@, = 1430/18608: 0.0768492° These exact values

place zeros at the third and fourth sideldB8gyut result in a discontinuity at the edges andi®®ct fall-off. The
truncated coefficients do not null the sidelobewal; but have an improved 18 dB/oct fall-&#26]

Nuttall window, continuous first derivative

Consideringn as a real number, the

Nuttall window function and its fir Nuttall window (continuous first derivative) Fourier transform
derivative are continuous 0
everywhere. That is, the function goes :%8
to 0 atn = 0, unlike the Blackman— -30
Nuttall and Blackman-Hari a g
windows, which have a small positive 2 :gg
value at zero (at "step” from the zero 2 80
outside the window), like the -90
Hamming window. The Blackman :{‘1’8

window defined viax is also -%%8

continuous with continuous derivative -40-30-20-10 0 10 20 30 40
at the edge, but the described "exact samples bins
Blackman window" is not.

Nuttall window, continuous first derivativi;= 2.0212/15]

w(n) = ag — a1 cos 2mn + ag cos dmn — a3 cos bmn
ST N ) TP \N ) P N -

ap = 0.355768; a; = 0.487396; as = 0.144232; a3 = 0.012604

Blackman—Nuttall window
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( 2mn
w(n) = ag — a1 cos

ay = 0.3635819;

Blackman—Harris window

A generalization of the Hamming
family, produced by adding more
shifted sinc functions, meant to

minimize side-lobe leve128]

( 2mn
w(n) = ag — a1 cos

ap = 0.35875;

Flat top window

N-1

a; = 0.4891775;

N-1

a; = 0.48829;

Blackman-Nuttall window
b1 ——  S— —

samples

decibels

Window function - Wikipedi

Fourier transform

-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-40

-30-20-10 0 10 20 30 40

bins

Blackman—Nuttall windows = 1.9761(15]

6m™n
N-1

4dmn
N -1

) + ancos( ™) = ancos(

az = 0.1365995;

Blackman-Harris window

N-1

samples

Blackman—Harris windowB = 2.004415]

)+ ancos( ™ ) = ancos(

ap = 0.14128; a3 = 0.01168

4mn 6mn

N-1

N-1

)

az = 0.0106411

Fourier transform

0
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-40-30-20-10 0 10 20 30

bins

decibels

40

)

A flat top window is a partially negative-valuednabw that has minimal scalloping loss in the fragryedomain.
Such windows have been made available in spectnatyzers for the measurement of amplitudes of sidias
frequency component®ll29] Drawbacks of the broad bandwidth are poor frequeesolution and high noise

bandwidth.

Flat top windows can be designed using low-pates filesign method$ or they may be of the usual sum-of-
cosine-terms variety®! An example of the latter is the flat top windowadable in the Stanford Research Systems

(SRS) SR785 spectrum analyzer:
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SRS flat top window Fourier transform

0 L1
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
Y A S Y I (e -+
0 N-1 -40-30-20-10 0 10 20 30 40

samples bins

—_—

amplitude

decibels
FTTTTT T T U707
I A T

SRS flat top windowB = 3.7702(15]

w(n) = ag — a; cos 2mn + ay cos dmn — ag cos 6mn + a4 cos Smn
ST Vo) T\ - BT \v—1 ) T AN 1

ap=1;, a1 =193; ay=129; a3=0.388; a4 =0.028 (19

Rife—Vincent window

Rife and Vincent define three classes of windowsstmicted as sums of cosines; the classes areagjeagons of the
Hanning window3% Their order-P windows are of the form (normalitedhave unity average as opposed to unity
max as the windows above are):

P [2mn
w(n) = 1—|—lz=1:alcos(N_1).

For order 1, this formula can match the Hanningdew fora; = —1; this is the Rife—Vincent class-1 window, idef
by minimizing the high-order sidelobe amplitudeeTdiass-I order-2 Rife—Vincent window haxs= —-4/3 and

a, = 1/3. Coefficients for orders up to 4 are tabedd?!! For orders greater than 1, the Rife—Vincent window
coefficients can be optimized for class II, meammgimized main-lobe width for a given maximum sidee, or for

class I, a compromise for which order 2 resemBleskmann's windo#32] Given the wide variety of
Rife—Vincent windows, plots are not given here.

Power-of-cosine windows

Window functions in the power-of-cosine family arfethe form:

™ ™
'w(n)zcoso‘(N_1 2)
The rectangular windowx(= 0), the cosine windowx(= 1), and the Hann windowt & 2) are members of this family.
Cosine window
™ T i ™
w(n) = cos(N_ i 5) = s1n(N_ 1)

The cosine window is also known as tliee window Cosine windovdescribes the shapewf(n)

A cosine window convolved by itself is known as B@hman window.
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Cosine window Fourier transform

| -

decibels

-40-30-20-10 0 10 20 30 40
samples bins

Cosine windowB = 1.23(11]

Adjustable windows
Gaussian window

The Fourier transform of a Gaussian

is also a Gaussian (it is an Gaussian window (o = 0.4) Fourier transform
eigenfunction of the Fourier 1 1 0 T T T T 1
Transform). Since the Gaussian 0.9 :%8 - 1 =TT
function extends to infinity, it must 0.8 -30 |- . 1 1 ]
either be truncated at the ends of the 88'2 w T 1]
window, or itself windowed with 50:5 % -60
another zero-ended windd#! €0.a L 228

“0.3 -90
Since the log of a Gaussian produces =~ 0.2 11
a parabola, this can be used for nearly 21 -120

exact quadratic interpolation in 3940-30-20-10 0 10 20 30 40

frequency estimatiof$31341(35] samples bins
. (n_(N_l)/2 )2 Gaussian window; = 0.4;B = 1.45.
w(n)=e 2\ WD/
o< 0.5

The standard deviation of the Gaussian functiaifNs-1)/2 sampling periods.
Confined Gaussian window

The confined Gaussian window yields the smallessibte root mean square frequency wigiffor a given temporal
width 6381 These windows optimize the RMS time-frequency bddth products. They are computed as the

minimum eigenvectors of a parameter-dependent xndtne confined Gaussian window family containsc¢hbsine
window and the Gaussian window in the limiting casélarge and smadk, respectively.
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Confined Gaussian window (o: = 0.1N) Fourier transform

) = o ey e
-10

-30

| |
BwWN
olele]

-50

decibels
o
oo

-80
-90
-100
-110
-120
-130
0 N-1 -40-30-20-10 0 10 20 30 40

samples bins

| Y O T |

Confined Gaussian window, = 0.IN; B = 1.9982.

Approximate confined Gaussian App. conf. Gaussian window (o: = 0.1N) Fourier transform
window of-4 !
-10 -
-20 -
A confined Gaussian window of -30 -
temporal widtho; is well - N
, -60 .
approximated by?®! g+ i
-80 —
-90 —

-40-30-20-10 O 10 20 30 40
samples bins

Approximate confined Gaussian windaw= 0.1N; B = 1.9979.

G(—3)[G(n+ N) + G(n— N)]

w(n) = G(n) — G(_%—FN)-I-G(—%_N)

with the Gaussian:

G(z)=e

The temporal width of the approximate window israpyotically equal tas for o; < 0.14N.[36]

Generalized normal window

A more generalized version of the Gaussian windothié generalized normal wind& Retaining the notation from
the Gaussian window above, we can represent thidom as

n—(N-1)/2 \?
o(N—1)/2 )

w(n,p) =e (
for any everp. At p = 2, this is a Gaussian window andmapproacheso, this approximates to a rectangular
window. The Fourier transform of this window doexd axist in a closed form for a genepaHowever, it
demonstrates the other benefits of being smoofbstble bandwidth. Like the Tukey window discusksdr, this
window naturally offers a "flat top" to control tleenplitude attenuation of a time-series (on whiehden't have a
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control with Gaussian window). In essence, it affargood (controllable) compromise, in terms ots@t leakage,
frequency resolution and amplitude attenuationrwbeth the Gaussian window and the rectangular win8ew also

[38] for a study on time-frequency representation ifwindow (or function).
Tukey window

The Tukey window!1I39 also known
as thetapered cosine windgwan be
regarded as a cosine lobe of width
aN/2 that is convolved with a
rectangular window of width

(1 —a/2)N.

Tukey window (a = 0.5)

samples

Tukey windowg = 0.5;B = 1.22[11]

4

a(N-1)
2

w(n) = 4 1

or expressed with the havercosilw/g) function:

( hVC(ﬂ' (a(;n_l) — 1)) o0<n< a(l\;_l)

w(n) = 4 1 W) «p < (N=1)(1

a(N-1)

At o = 0 it becomes rectangular, andrat 1 it becomes a Hann window.

Planck-taper window

Fourier transform

0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130

-40-30-20-10 0 10 20 30 40

bins

decibels

% [l—l—cos(ﬂ(a 2n__ _ 1))] 0<n< a(l\;_l)

<n<(N-1)(1-3)

\%[1+cos(7r(a(§r"_1) —§+1))] (N-D(1-%)<n< (N-1)

\hvc(ﬂ'( 2n —§+1)) (N-1)(1-%)<n<(N-1)

The so-called "Planck-taper" window is a bump figrcthat has been widely us® in the theory of partitions of

unity in manifolds. It is smooth @ function) everywhere, but is exactly z

ero outsifla compact region, exactly

one over an interval within that region, and vase®othly and monotonically between those limifsuse as a
window function in signal processing was first segjgd in the context of gravitational-wave astropanspired by

the Planck distributioffl! It is defined as a piecewise function

( 1 .
m 0<n<e(N 1)
1 N -1 1—€¢)(N-1
wm=] 1 W-D<n<a-9W-b
m (1—6)(N—1)<n<(N—1)
L 0 otherwise

where
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Planck-taper window (g = 0.1) Fourier transform

|
v
2
v
v
o
-100
-110
-120
-130
-40-30-20-10 0 10 20 30 40
samples bins

Planck-taper window; = 0.1;B = 1.10.

1

Zy(n;e) = 2e

T2 @n/(N—1)—1)  1-2¢x@n/(N—-1)-1)

The amount of tapering (the region over which tnection is exactly 1) is controlled by the parametavith smaller

values giving sharper transitions.
DPSS or Slepian window

The DPSS (discrete prolate spheroidal
sequence) or Slepian window is used
to maximize the energy concentration
in the main lobé*2!

The main lobe ends at a bin given by
the parametes.[43]
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DPSS window (o = 2) Fourier transform

1 T T—T 0 T T T T 1
210 b I |
-20 -
230 |- | I
-40
-50
-60
-70
-80
-90
100
110
120

-40-30-20-10 0 10 20 30 40
samples bins

S0.6

decibels

[
w
o

DPSS windowg = 2;B =1.47.

DPSS window (a = 3) Fourier transform

! 0
-10

-30

decibels
o
o

-40-30-20-10 O 10 20 30 40
samples bins

DPSS windowg = 3;B=1.77.
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Kaiser window

The Kaiser, or Kaiser-Bessel, window
is a simple approximation of the
DPSS window using Bessel functions, T 0

discovered by Jim Kaisé1145143](46] gt
-30
-40
-50
-60
-70
-80
-90
100
110
120

-40-30-20-10 O 10 20 30 40
samples bins

Kaiser window (o = 2) Fourier transform

decibels

1 ' l '

[
w
o

Kaiser windowg = 2;B = 1.4963.

Kaiser window (a = 3) Fourier transform

- 0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130

-40-30-20-10 0 10 20 30 40

samples bins

decibels

Kaiser windowg = 3;B = 1.795215]

Iy (ﬂ'a\/l — (% — 1)2)
Iy(wa)

w(n) =

wherelg is the zero-th order modified Bessel functionta first kind. Variable parameterdetermines the tradeoff
between main lobe width and side lobe levels ofsghectral leakage pattern. The main lobe widthgitween the

nulls, is given by24/1 + o2, in units of DFT bind4”] and a typical value aof is 3.

= Sometimes the formula for w(n) is written in terais parametef & ma..[46]
= zero-phase version:

Iy (11'01/1 — (%)2)

Iy(ma)

wo(n) =

Dolph—Chebyshev window

Minimizes the Chebyshev norm of the side-lobesafgiven main lobe widtH8!

The zero-phase Dolph—Chebyshev window functigfm) is usually defined in terms of its real-valuedadete
Fourier transformWo(K):14l
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Dolph-Chebyshev window (a = 5) Fourier transform
1 1T 1

1T T | - — — 0

[ | | | | -10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
0 N-1 -40-30-20-10 0 10 20 30 40

samples bins

-

decibels

FTTT T T T T T

3 0 T O T

Dolph—Chebyshev window, = 5;B = 1.94.

cos{N cos~![B cos(%)]}
cosh[N cosh™ ()]
= cos| - cosh™ (10%)]

Wo (k) =

where the parametersets the Chebyshev norm of the sidelobes ta €2@ibeld*S]

The window function can be calculated fratg(k) by an inverse discrete Fourier transform (DE#)):

=2

—1
Wo(k) - e2™/N  _N/2<n< N/2.
0

1

wo(n) = N

£
Il

Thelaggedversion of the window, with 8 n<N-1, can be obtained by:

w(n) = wo (n— %) ,

which for even values of N must be computed asvid!

=
,_.

o 22) 2 w2 R ] e

k=0

which is an inverse DFT of—e ¥ )* - Wy (k).
Variations:

= Due to the equiripple condition, the time-domaimdaw has discontinuities at the edges. An appraiama
that avoids them, by allowing the equiripples topoff at the edges, is a Taylor window
(http://www.mathworks.com/help/signal/ref/tayloraimml).

= An alternative to the inverse DFT definition isasvailable.[2] (http://practicalcryptography.com
/miscellaneous/machine-learning/implementing-datpebyshev-window/).

Ultraspherical window

The Ultraspherical window was introduced in 1984Rmy Strei®® and has application in antenna array delSn,
non-recursive filter desigh% and spectrum analysgg]

Like other adjustable windows, the Ultrasphericeddew has parameters that can be used to corgribitirier
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transform main-lobe width and

relative side-lobe amplitude. Ultraspherical window (p = -0.5) Fourier transform
Uncommon to other windows, it has 1 o -F---1--1 | e
an additional parameter which can be 0.9 g ]
used to set the rate at which 0.8 -30 | -
side-lobes decrease (or increase) in %g'g g ]
amplitudel52I53] £20's -60 - -
a- -70 |- -
] ] 20.4 -80 -
The window can be expressed in the 0.3
time-domain as follow?] 0.2
0.1
0
-40-30-20-10 0 10 20 30 40
samples bins
The Ultraspherical windowis parameter determines whether its Fourier transform
side-lobe amplitudes decrease, are level, or (sh@na) increase with frequency.
N-1

1 e km 2nrk
w(n) = ~ Chy_1 (o) + Z Ch_1 (.’no cos W) cos —
k=1

WhereCJ’f,. is the Ultraspherical polynomial of degree N, agcandu control the side-lobe patteris]

Certain specific values ¢f yield other well-known windowg: = 0 andu = 1 give the Dolph—Chebyshev and

Saramaki windows respectivé¥)] See here (http://octave.sourceforge.net/signaitfon/ultrwin.html) for
illustration of Ultraspherical windows with varig@rametrization.

Exponential or Poisson window

The Poisson window, or more o :
generically the exponential window Exponential window (t = Nj2) Fourier transform

increases exponentially towards the 1 0  — | E— —
center of the window and decreases 0.9 jég
exponentially in the second half. 0.8 -30
Since the exponential function never -628'; © I
reaches zero, the values of the 255 2 -60
window at its limits are non-zero (it £0.4 o :;8
can be seen as the multiplication of an "0.3 -90
exponential function by a rectangular =~ 0.2 1%‘{8
window34)). It is defined by o2 120
0 N-1 -40-30-20-10 O 10 20 30 40
w(n) = e—‘n—%‘%’ samples bins

Exponential window; =N/2,B = 1.08.
whererz is the time constant of the
function. The exponential function
decays ag ~ 2.71828 or approximately 8.69 dB per time consBhfThis means that for a targeted decappafB
over half of the window length, the time constaig given by

T_£8.69
2 D
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Exponential window (t = (N/2)/(60/8.69))

1T T—1
0.9

b+ { - +

0.8

0.7
Eo.e -
205

T

50.4
0.3

0.2
0.1
0

0
samples

Window function - Wikipedi

Fourier transform

0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110

decibels

-40-30-20-10 0 10 20 30 40
bins

Exponential windows = (N/2)/(60/8.69) B = 3.46.

Hybrid windows

Window functions have also been constructed asptcidttive or additive combinations of other windaw

Bartlett—Hann window

Bartlett-Hann window

| B |

samples

Bartlett—Hann windowB = 1.46.

w(n) =ap —a n —l‘—a cos 2mn
SN 2] PN -
ap = 0.62; a; —0.48; ay = 0.38

Planck—Bessel window

Fourier transform

wn
Q
Ee]
(&)
Q
o
-100
-110
-120
-130
-40-30-20-10 0 10 20 30 40
bins

A Planck-taper window multiplied by a Kaiser windewhich is defined in terms of a modified Besseldiuion. This
hybrid window function was introduced to decredse pieak side-lobe level of the Planck-taper winddwe still
exploiting its good asymptotic dec&§! It has two tunable parametersrom the Planck-taper andfrom the Kaiser

window, so it can be adjusted to fit the requiretaari a given signal.
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Planck-Bessel window (¢ = 0.1, a = 4.45) Fourier transform
1 — — 1 ] 0
09} | - . -10
-20
0.8 -30
00.7 » -40
506+ | 1 3 -50
'_‘50 5 L £ -60
a2 =T ‘ 1 % -70
50.4 © -80
0.3 -90
! ; -100
0.2 110
0.1} 4 120
0 -130

0 N-1 -40-30-20-10 0 10 20 30 40

samples bins

Planck—Bessel window,= 0.1, = 4.45;B=2.16.

Hann—Poisson window

A Hann window multiplied by a

Poisson window. which has no Hann-Poisson window (a = 2) Fourier transform
side-lobes, in the sense that its Fourier 11T =T . 0
transform drops off forever away 0.9 L g
from the main lobe. It can thus be 8-3 -30
used in hill climbing algorithms like & ¢ 30
Newton's methc.57] The = 2 -60
: . . . a g -70
Hann—Poisson window is defined by:  E0.4 © -80
®0.3 -90
-100
0.2 ‘110
0.1 -120
0 -130

0 N-1 -40-30-20-10 0 10 20 30 40
samples bins

Hann—Poisson window, = 2;B = 2.0411]

1 271"rL —a|N—-1-2n)| 27-[-” —a|N—-1-2n|
w(n)=§ 1 —cos N_1 e N = hav N_1 e N1

wherea is a parameter that controls the slope of the eaptal.

Other windows

Lanczos window

w(n) = sinc (sz - 1)

= used in Lanczos resampling
= for the Lanczos windovginc(z) is defined asin(wz) /7
= also known as ainc windowbecause

1) is the main lobe of a normalized sinc function

w (n)—sinc( 2n
o N

Window function - Wikipedi
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Lanczos window Fourier transform

0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130

-40-30-20-10 0 10 20 30 40

samples bins

decibels

Sinc or Lanczos window = 1.30[11]

Comparison of windows

When selecting an appropriate
window function for an
application, this comparison graph 0
may be useful. The frequency axis [
has units of FFT "bins" when the [
window of length N is applied to ~20}
data and a transform of length N is
computed. For instance, the value

at frequency % "bin" (third tick

mark) is the response that would = !
be measured in bins k and k+1 to a 60 F

windowing functions in the frequency domain

40}

rectangular

sinusoidal signal at frequency hann

k+v2. It is relative to the maximum hamming ‘
possible response, which occurs 80 | tukey H ﬁ
when the signal frequency is an ' blackman | |
integer number of bins. The value T ety ‘ 1/l .\{'th |
at frequency % is referred to as the 10 o T 10

maximumscalloping losof the
window, which is one metric used
to compare windows. The Window functions in the frequency domain ("specieakage”)
rectangular window is noticeably

worse than the others in terms of

that metric.

normalized frequency

Other metrics that can be seen are the width ofrthii@ lobe and the peak level of the sidelobes¢lwhespectively
determine the ability to resolve comparable striesginals and disparate strength signals. Themgotar window
(for instance) is the best choice for the formed #hre worst choice for the latter. What cannotdensfrom the
graphs is that the rectangular window has the mase bandwidth, which makes it a good candidatedbecting
low-level sinusoids in an otherwise white noiseisamment. Interpolation techniques, such as zeddmg and
frequency-shifting, are available to mitigate itggntial scalloping loss.

Overlapping windows

When the length of a data set to be transformé&dger than necessary to provide the desired freguessolution, a
common practice is to subdivide it into smalleissatd window them individually. To mitigate thes¥d at the edges
of the window, the individual sets may overlapimd. See Welch method of power spectral analysisiae modified
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discrete cosine transform.

Two-dimensional windows

Two-dimensional windows are used in, e.g., image@ssing. They can be constructed from one-dimeakio
windows in either of two form®l

The separable forn¥y/ (m,n) = w(m)w(n) is trivial to compute. The radial ford/ (m,n) = w(r), which

involves the radius = \/(m — M/2)% + (n — N/2)?, is isotropic, independent on the orientationhef t

coordinate axes. Only the Gaussian function is befiarable and isotropR®! The separable forms of all other
window functions have corners that depend on tloécehof the coordinate axes. The isotropy/anisotiaia
two-dimensional window function is shared by it®tdimensional Fourier transform. The differencenssn the
separable and radial forms is akin to the resuttifffaction from rectangular vs. circular appe#gsiyrwhich can be
visualized in terms of the product of two sinc ftiogs vs. an Airy function, respectively.

See also
: fﬂ%elt(i:tgalelreakage Wikimedia Commons has
. P . & media related toVindow
= Apodization &/ funcion

= Welch method

= Short-time Fourier transform
= Window design method

= Kolmogorov—Zurbenko filter

Notes

1. Mathematically, the noise equivalent bandwidthrahsfer functiorH is the bandwidth of an ideal rectangular filtethwi
the same peak gain akthat would pass the same power with white noipatirin the units of frequendy(e.g. hertz), it

is given by
1 o0
Bioise = —2/ |H(f)|2df
[ H(f)maz 70
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