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In signal processing, a window function (also known as an apodization function or tapering function[1]) is a
mathematical function that is zero-valued outside of some chosen interval. For instance, a function that is constant
inside the interval and zero elsewhere is called a rectangular window, which describes the shape of its graphical
representation. When another function or waveform/data-sequence is multiplied by a window function, the product is
also zero-valued outside the interval: all that is left is the part where they overlap, the "view through the window".

In typical applications, the window functions used are non-negative, smooth, "bell-shaped" curves.[2] Rectangle,
triangle, and other functions can also be used. A more general definition of window functions does not require them to
be identically zero outside an interval, as long as the product of the window multiplied by its argument is square
integrable, and, more specifically, that the function goes sufficiently rapidly toward zero.[3]
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Applications

Applications of window functions include spectral analysis/modification/resynthesis,[4] the design of finite impulse
response filters, as well as beamforming and antenna design.

Spectral analysis

The Fourier transform of the function cos ωt is zero, except at frequency ±ω. However, many other functions and
waveforms do not have convenient closed-form transforms. Alternatively, one might be interested in their spectral
content only during a certain time period.

In either case, the Fourier transform (or a similar transform) can be applied on one or more finite intervals of the
waveform. In general, the transform is applied to the product of the waveform and a window function. Any window
(including rectangular) affects the spectral estimate computed by this method.

Windowing

Windowing of a simple waveform like cos ωt causes its Fourier transform to develop non-zero values (commonly
called spectral leakage) at frequencies other than ω. The leakage tends to be worst (highest) near ω and least at
frequencies farthest from ω.

If the waveform under analysis comprises two sinusoids of different frequencies, leakage can interfere with the ability
to distinguish them spectrally. If their frequencies are dissimilar and one component is weaker, then leakage from the
stronger component can obscure the weaker one’s presence. But if the frequencies are similar, leakage can render
them unresolvable even when the sinusoids are of equal strength. The rectangular window has excellent resolution
characteristics for sinusoids of comparable strength, but it is a poor choice for sinusoids of disparate amplitudes. This
characteristic is sometimes described as low dynamic range.

At the other extreme of dynamic range are the windows with the poorest resolution and sensitivity, which is the ability
to reveal relatively weak sinusoids in the presence of additive random noise. That is because the noise produces a
stronger response with high-dynamic-range windows than with high-resolution windows. Therefore,
high-dynamic-range windows are most often justified in wideband applications, where the spectrum being analyzed is
expected to contain many different components of various amplitudes.
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Figure 1: Zoomed view of spectral leakage

In between the extremes are
moderate windows, such as
Hamming and Hann. They are
commonly used in narrowband
applications, such as the
spectrum of a telephone channel.
In summary, spectral analysis
involves a trade-off between
resolving comparable strength
components with similar
frequencies and resolving
disparate strength components
with dissimilar frequencies. That
trade-off occurs when the
window function is chosen.

Discrete-time signals

When the input waveform is
time-sampled, instead of
continuous, the analysis is usually
done by applying a window
function and then a discrete
Fourier transform (DFT). But the
DFT provides only a sparse
sampling of the actual discrete-time Fourier transform (DTFT) spectrum. Figure 1 shows a portion of the DTFT for a
rectangularly-windowed sinusoid. The actual frequency of the sinusoid is indicated as "0" on the horizontal axis.
Everything else is leakage, exaggerated by the use of a logarithmic presentation. The unit of frequency is "DFT bins";
that is, the integer values on the frequency axis correspond to the frequencies sampled by the DFT. So the figure
depicts a case where the actual frequency of the sinusoid coincides with a DFT sample, and the maximum value of the
spectrum is accurately measured by that sample. When it misses the maximum value by some amount (up to ½ bin),
the measurement error is referred to as scalloping loss (inspired by the shape of the peak). For a known frequency,
such as a musical note or a sinusoidal test signal, matching the frequency to a DFT bin can be prearranged by choices
of a sampling rate and a window length that results in an integer number of cycles within the window.

Noise bandwidth

The concepts of resolution and dynamic range tend to be somewhat subjective, depending on what the user is actually
trying to do. But they also tend to be highly correlated with the total leakage, which is quantifiable. It is usually
expressed as an equivalent bandwidth, B. It can be thought of as redistributing the DTFT into a rectangular shape with
height equal to the spectral maximum and width B.[note 1][5] The more the leakage, the greater the bandwidth. It is
sometimes called noise equivalent bandwidth or equivalent noise bandwidth, because it is proportional to the average
power that will be registered by each DFT bin when the input signal contains a random noise component (or is just
random noise). A graph of the power spectrum, averaged over time, typically reveals a flat noise floor, caused by this
effect. The height of the noise floor is proportional to B. So two different window functions can produce different
noise floors.

Processing gain and losses

In signal processing, operations are chosen to improve some aspect of quality of a signal by exploiting the differences
between the signal and the corrupting influences. When the signal is a sinusoid corrupted by additive random noise,
spectral analysis distributes the signal and noise components differently, often making it easier to detect the signal's
presence or measure certain characteristics, such as amplitude and frequency. Effectively, the signal to noise ratio
(SNR) is improved by distributing the noise uniformly, while concentrating most of the sinusoid's energy around one
frequency. Processing gain is a term often used to describe an SNR improvement. The processing gain of spectral
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This figure compares the processing losses of three window functions for sinusoidal

inputs, with both minimum and maximum scalloping loss.

Two different ways to generate 8-point triangular window functions for spectral analysis

applications. MATLAB calls them "symmetric" and "periodic". The latter is also

historically called "DFT Even".

analysis depends on the window
function, both its noise bandwidth
(B) and its potential scalloping
loss. These effects partially offset,
because windows with the least
scalloping naturally have the most
leakage.

The figure at right depicts the
effects of three different window
functions on the same data set,
comprising two equal strength
sinusoids in additive noise. The
frequencies of the sinusoids are
chosen such that one encounters
no scalloping and the other
encounters maximum scalloping.
Both sinusoids suffer less SNR loss
under the Hann window than
under the Blackman–Harris
window. In general (as mentioned
earlier), this is a deterrent to using
high-dynamic-range windows in
low-dynamic-range applications.

Filter design

Windows are sometimes used in
the design of digital filters, in
particular to convert an "ideal"
impulse response of infinite
duration, such as a sinc function,
to a finite impulse response (FIR)
filter design. That is called the
window method.[6][7]

Rectangular window
applications

Analysis of transients

When analyzing a transient signal
in modal analysis, such as an
impulse, a shock response, a sine
burst, a chirp burst, or noise burst,
where the energy vs time
distribution is extremely uneven,
the rectangular window may be
most appropriate. For instance,
when most of the energy is located
at the beginning of the recording, a
non-rectangular window
attenuates most of the energy,
degrading the signal-to-noise
ratio.[8]
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Two different ways to generate an 8-point Hann window sequence.

Comparing the discrete-time Fourier transforms of "symmetric" and "periodic" windows.

The triangular form was chosen for its non-zero end-points, one of which is discarded in

the periodic version, with a noticeable performance degradation. Parameter L is the width

of the base of the triangle in units of the sample interval. Parameter N is 8.

Harmonic analysis

One might wish to measure the
harmonic content of a musical
note from a particular instrument
or the harmonic distortion of an
amplifier at a given frequency.
Referring again to Figure 1, we
can observe that there is no
leakage at a discrete set of
harmonically-related frequencies
sampled by the DFT. (The spectral
nulls are actually zero-crossings,
which cannot be shown on a
logarithmic scale such as this.)
This property is unique to the
rectangular window, and it must be
appropriately configured for the
signal frequency, as described
above.

Symmetry

Window functions generated for
digital filter design are symmetrical
sequences, usually an odd length
with a single maximum at the
center. Windows for DFT/FFT
usage, as in spectral analysis or
time-frequency filtering, are often
created by deleting the right-most
coefficient of an odd-length,
symmetrical window, making their
discrete frequency spectrum
purely real.[9] These are known as
periodic[10] or DFT-even.[11] Such
a window is generated by the
MATLAB function
hann(512,'periodic') for instance.
To generate it with the formula in
this article (below), the window
length (N) is 513, and the 513th
coefficient of the generated
sequence is discarded.

For a window function with zero-valued end-points, deleting one or both end-points has no effect on its DTFT. But the
function designed for N+1 samples, instead of N, typically has a slightly narrower main lobe, slightly higher sidelobes,
and a slightly lower noise bandwidth. Similarly, deleting both zeros from a function designed for N+2 samples further
amplifies those effects. For a window function with non-zero end-points, such as triangular or Poisson, deleting one of
them can result in higher sidelobes and noise bandwidth with little or no main lobe improvement.

There is also a cosmetic result of truncating an N+1 sample symmetric window. It happens when we sample the DTFT
only at intervals of  cycles/sample, which is the effect of an N-point DFT. The baseline width of the N+1 sample

window with zero-valued end-points is just N sample-intervals. That usually means the DTFT zero-crossings, which
create the fine-grained sidelobe structure away from the main lobe, occur at an interval that asymptotically
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Comparing the discrete-time Fourier transforms of "symmetric" and "periodic" windows.

The Poisson form was chosen for its non-zero end-points, one of which is discarded in the

periodic version, with a noticeable performance degradation.

approaches the same interval as
the DFT samples. When that
allows most of the DFT samples to
occur at or near the zero-crossings,
it creates an illusion of little or no
spectral leakage. But such a plot
only reveals the leakage into the
DFT bins from a sinusoid whose
frequency is also an integer DFT
bin. The unseen sidelobes reveal
the leakage to expect from
sinusoids at other frequencies.[12]

That is why it's important to
present the continuous function (as
seen below) and choose a window
that suppresses the sidelobes to an
acceptable level.

A list of window
functions

Terminology:

N represents the width, in samples, of a discrete-time, symmetrical window function  
When N is an odd number, the non-flat windows have a singular maximum point. When N is even, they have a
double maximum.
It is sometimes useful to express    as a sequence of samples of the lagged version of a zero-phase
(https://ccrma.stanford.edu/~jos/filters/Zero_Phase_Filters_Even_Impulse.html) function:

[13]

Each figure label includes the corresponding noise equivalent bandwidth metric (B),[note 1] in units of DFT bins.

B-spline windows

B-spline windows can be obtained as k-fold convolutions of the rectangular window. They include the rectangular
window itself (k = 1), the triangular window (k = 2) and the Parzen window (k = 4).[14] Alternative definitions sample
the appropriate normalized B-spline basis functions instead of convolving discrete-time windows. A kth order B-spline
basis function is a piece-wise polynomial function of degree k−1 that is obtained by k-fold self-convolution of the
rectangular function.

Rectangular window

The rectangular window (sometimes known as the boxcar or Dirichlet window ) is the simplest window, equivalent to
replacing all but N values of a data sequence by zeros, making it appear as though the waveform suddenly turns on
and off:

Other windows are designed to moderate these sudden changes, which reduces scalloping loss and improves dynamic
range, as described above (Window function#Spectral analysis).

The rectangular window is the 1st order B-spline window as well as the 0th power cosine window.
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Rectangular window; B = 1.0000.[15]

Triangular window (with L=N-1) or equivalently the Bartlett window; B = 1.3333.[15]

Parzen window; B = 1.92.[11]

Triangular window

Triangular windows are given by:

where L can be N,[11][16] N+1,[17] or
N-1.[18] The last one is also known as
Bartlett window  or Fejér window.
All three definitions converge at large
N.

The triangular window is the 2nd
order B-spline window and can be
seen as the convolution of two N/2
width rectangular windows. The
Fourier transform of the result is the squared values of the transform of the half-width rectangular window.

Parzen window

The Parzen window, also known as
the de la Vallée Poussin window,[11]

is the 4th order B-spline window
given by:
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Welch window; B = 1.20.[11]

Hann window; B = 1.5000.[15]

Other polynomial windows

Welch window

The Welch window consists of a
single parabolic section:

.[17]

The defining quadratic polynomial
reaches a value of zero at the samples
just outside the span of the window.

Generalized Hamming windows

Generalized Hamming windows are of the form:

.

The periodic/DFT-even forms have only three non-zero DFT coefficients and share the benefits of a sparse frequency
domain representation with higher-order generalized cosine windows.

Hann (Hanning) window

The Hann window named after Julius
von Hann and also known as the
Hanning (for being similar in name
and form to the Hamming window),
von Hann and the raised cosine
window is defined by (with hav for
the haversine function):[19]
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Hamming window, α = 0.53836 and β = 0.46164; B = 1.37. The original Hamming

window would have α = 0.54 and β = 0.46; B = 1.3628.[15]

The ends of the cosine just touch zero, so the side-lobes roll off at about 18 dB per octave.[20]

Hamming window

The window with these particular
coefficients was proposed by Richard
W. Hamming. The window is
optimized to minimize the maximum
(nearest) side lobe, giving it a height
of about one-fifth that of the Hann
window.[21][22]

with

instead of both constants being equal to 1/2 in the Hann window. The constants are approximations of values
α = 25/46 and β = 21/46, which cancel the first sidelobe of the Hann window by placing a zero at frequency
5π/(N − 1).[11] Approximation of the constants to two decimal places substantially lowers the level of sidelobes,[11] to
a nearly equiripple condition.[22] In the equiripple sense, the optimal values for the coefficients are α = 0.53836 and
β = 0.46164.[22][23]

zero-phase version:

Higher-order generalized cosine windows

Windows of the form:

have only 2K + 1 non-zero DFT coefficients, which makes them good choices for applications that require windowing
by convolution in the frequency-domain. In those applications, the DFT of the unwindowed data vector is needed for
a different purpose than spectral analysis. (see Overlap-save method). Generalized cosine windows with just two
terms (K = 1) belong in the subfamily generalized Hamming windows.
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Blackman window; α = 0.16; B = 1.73.[11]

Nuttall window, continuous first derivative; B = 2.0212.[15]

Blackman windows

Blackman windows are defined as:

By common convention, the unqualified term Blackman window refers to Blackman's "not very serious proposal" of
α = 0.16 (a0 = 0.42, a1 = 0.5, a2 = 0.08), which closely approximates the "exact Blackman",[24] with

a0 = 7938/18608 ≈ 0.42659, a1 = 9240/18608 ≈ 0.49656, and a2 = 1430/18608 ≈ 0.076849.[25] These exact values

place zeros at the third and fourth sidelobes,[11] but result in a discontinuity at the edges and a 6 dB/oct fall-off. The
truncated coefficients do not null the sidelobes as well, but have an improved 18 dB/oct fall-off.[11][26]

Nuttall window, continuous first derivative

Considering n as a real number, the
Nuttall window function and its first
derivative are continuous
everywhere. That is, the function goes
to 0 at n = 0, unlike the Blackman–
Nuttall and Blackman–Harris
windows, which have a small positive
value at zero (at "step" from the zero
outside the window), like the
Hamming window. The Blackman
window defined via α is also
continuous with continuous derivative
at the edge, but the described "exact
Blackman window" is not.

Blackman–Nuttall window
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Blackman–Nuttall window; B = 1.9761.[15]

Blackman–Harris window; B = 2.0044.[15]

Blackman–Harris window

A generalization of the Hamming
family, produced by adding more
shifted sinc functions, meant to
minimize side-lobe levels[27][28]

Flat top window

A flat top window is a partially negative-valued window that has minimal scalloping loss in the frequency domain.
Such windows have been made available in spectrum analyzers for the measurement of amplitudes of sinusoidal
frequency components.[15][29] Drawbacks of the broad bandwidth are poor frequency resolution and high noise
bandwidth.

Flat top windows can be designed using low-pass filter design methods,[29] or they may be of the usual sum-of-
cosine-terms variety.[15] An example of the latter is the flat top window available in the Stanford Research Systems
(SRS) SR785 spectrum analyzer:
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SRS flat top window; B = 3.7702.[15]

[15]

Rife–Vincent window

Rife and Vincent define three classes of windows constructed as sums of cosines; the classes are generalizations of the
Hanning window.[30] Their order-P windows are of the form (normalized to have unity average as opposed to unity
max as the windows above are):

.

For order 1, this formula can match the Hanning window for a1 = −1; this is the Rife–Vincent class-I window, defined
by minimizing the high-order sidelobe amplitude. The class-I order-2 Rife–Vincent window has a1 = −4/3 and

a2 = 1/3. Coefficients for orders up to 4 are tabulated.[31] For orders greater than 1, the Rife–Vincent window
coefficients can be optimized for class II, meaning minimized main-lobe width for a given maximum side-lobe, or for
class III, a compromise for which order 2 resembles Blackmann's window.[31][32] Given the wide variety of
Rife–Vincent windows, plots are not given here.

Power-of-cosine windows

Window functions in the power-of-cosine family are of the form:

The rectangular window (α = 0), the cosine window (α = 1), and the Hann window (α = 2) are members of this family.

Cosine window

The cosine window is also known as the sine window. Cosine window describes the shape of 

A cosine window convolved by itself is known as the Bohman window.
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Cosine window; B = 1.23.[11]

Gaussian window, σ = 0.4; B = 1.45.

Adjustable windows

Gaussian window

The Fourier transform of a Gaussian
is also a Gaussian (it is an
eigenfunction of the Fourier
Transform). Since the Gaussian
function extends to infinity, it must
either be truncated at the ends of the
window, or itself windowed with
another zero-ended window.[33]

Since the log of a Gaussian produces
a parabola, this can be used for nearly
exact quadratic interpolation in
frequency estimation.[33][34][35]

The standard deviation of the Gaussian function is σ(N−1)/2 sampling periods.

Confined Gaussian window

The confined Gaussian window yields the smallest possible root mean square frequency width σω for a given temporal

width σt.[36] These windows optimize the RMS time-frequency bandwidth products. They are computed as the
minimum eigenvectors of a parameter-dependent matrix. The confined Gaussian window family contains the cosine
window and the Gaussian window in the limiting cases of large and small σt, respectively.
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Confined Gaussian window, σt = 0.1N; B = 1.9982.

Approximate confined Gaussian window, σt = 0.1N; B = 1.9979.

Approximate confined Gaussian
window

A confined Gaussian window of
temporal width σt is well

approximated by:[36]

with the Gaussian:

The temporal width of the approximate window is asymptotically equal to σt for σt < 0.14 N.[36]

Generalized normal window

A more generalized version of the Gaussian window is the generalized normal window.[37] Retaining the notation from
the Gaussian window above, we can represent this window as

for any even . At , this is a Gaussian window and as  approaches , this approximates to a rectangular
window. The Fourier transform of this window does not exist in a closed form for a general . However, it
demonstrates the other benefits of being smooth, adjustable bandwidth. Like the Tukey window discussed later, this
window naturally offers a "flat top" to control the amplitude attenuation of a time-series (on which we don't have a
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Tukey window, α = 0.5; B = 1.22.[11]

control with Gaussian window). In essence, it offers a good (controllable) compromise, in terms of spectral leakage,
frequency resolution and amplitude attenuation, between the Gaussian window and the rectangular window. See also
[38] for a study on time-frequency representation of this window (or function).

Tukey window

The Tukey window,[11][39] also known
as the tapered cosine window, can be
regarded as a cosine lobe of width
αN/2 that is convolved with a
rectangular window of width
(1 − α/2)N.

or expressed with the havercosine (hvc) function:

At α = 0 it becomes rectangular, and at α = 1 it becomes a Hann window.

Planck-taper window

The so-called "Planck-taper" window is a bump function that has been widely used[40] in the theory of partitions of
unity in manifolds. It is smooth (a  function) everywhere, but is exactly zero outside of a compact region, exactly
one over an interval within that region, and varies smoothly and monotonically between those limits. Its use as a
window function in signal processing was first suggested in the context of gravitational-wave astronomy, inspired by
the Planck distribution.[41] It is defined as a piecewise function:

where
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Planck-taper window, ε = 0.1; B = 1.10.

DPSS window, α = 2; B = 1.47.

DPSS window, α = 3; B = 1.77.

The amount of tapering (the region over which the function is exactly 1) is controlled by the parameter ε, with smaller
values giving sharper transitions.

DPSS or Slepian window

The DPSS (discrete prolate spheroidal
sequence) or Slepian window is used
to maximize the energy concentration
in the main lobe.[42]

The main lobe ends at a bin given by
the parameter α.[43]
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Kaiser window, α = 2; B = 1.4963.

Kaiser window, α = 3; B = 1.7952.[15]

Kaiser window

The Kaiser, or Kaiser-Bessel, window
is a simple approximation of the
DPSS window using Bessel functions,
discovered by Jim Kaiser.[44][45][43][46]

where I0 is the zero-th order modified Bessel function of the first kind. Variable parameter α determines the tradeoff
between main lobe width and side lobe levels of the spectral leakage pattern. The main lobe width, in between the

nulls, is given by    in units of DFT bins,[47]  and a typical value of α is 3.

Sometimes the formula for w(n) is written in terms of a parameter [46]

zero-phase version:

Dolph–Chebyshev window

Minimizes the Chebyshev norm of the side-lobes for a given main lobe width.[48]

The zero-phase Dolph–Chebyshev window function w0(n) is usually defined in terms of its real-valued discrete

Fourier transform, W0(k):[49]
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Dolph–Chebyshev window, α = 5; B = 1.94.

where the parameter α sets the Chebyshev norm of the sidelobes to −20α decibels.[48]

The window function can be calculated from W0(k) by an inverse discrete Fourier transform (DFT):[48]

The lagged version of the window, with 0 ≤ n ≤ N−1, can be obtained by:

which for even values of N must be computed as follows:

which is an inverse DFT of  

Variations:

Due to the equiripple condition, the time-domain window has discontinuities at the edges. An approximation
that avoids them, by allowing the equiripples to drop off at the edges, is a Taylor window
(http://www.mathworks.com/help/signal/ref/taylorwin.html).
An alternative to the inverse DFT definition is also available.[2] (http://practicalcryptography.com
/miscellaneous/machine-learning/implementing-dolph-chebyshev-window/).

Ultraspherical window

The Ultraspherical window was introduced in 1984 by Roy Streit[50] and has application in antenna array design,[51]

non-recursive filter design,[50] and spectrum analysis.[52]

Like other adjustable windows, the Ultraspherical window has parameters that can be used to control its Fourier
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The Ultraspherical window's µ parameter determines whether its Fourier transform's

side-lobe amplitudes decrease, are level, or (shown here) increase with frequency.

Exponential window, τ = N/2, B = 1.08.

transform main-lobe width and
relative side-lobe amplitude.
Uncommon to other windows, it has
an additional parameter which can be
used to set the rate at which
side-lobes decrease (or increase) in
amplitude.[52][53]

The window can be expressed in the
time-domain as follows:[52]

where  is the Ultraspherical polynomial of degree N, and  and  control the side-lobe patterns.[52]

Certain specific values of  yield other well-known windows:  and  give the Dolph–Chebyshev and

Saramäki windows respectively.[50] See here (http://octave.sourceforge.net/signal/function/ultrwin.html) for
illustration of Ultraspherical windows with varied parametrization.

Exponential or Poisson window

The Poisson window, or more
generically the exponential window
increases exponentially towards the
center of the window and decreases
exponentially in the second half.
Since the exponential function never
reaches zero, the values of the
window at its limits are non-zero (it
can be seen as the multiplication of an
exponential function by a rectangular
window [54]). It is defined by

where τ is the time constant of the
function. The exponential function
decays as e ≃ 2.71828 or approximately 8.69 dB per time constant.[55] This means that for a targeted decay of D dB
over half of the window length, the time constant τ is given by
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Exponential window, τ = (N/2)/(60/8.69), B = 3.46.

Bartlett–Hann window; B = 1.46.

Hybrid windows

Window functions have also been constructed as multiplicative or additive combinations of other windows.

Bartlett–Hann window

Planck–Bessel window

A Planck-taper window multiplied by a Kaiser window which is defined in terms of a modified Bessel function. This
hybrid window function was introduced to decrease the peak side-lobe level of the Planck-taper window while still
exploiting its good asymptotic decay.[56] It has two tunable parameters, ε from the Planck-taper and α from the Kaiser
window, so it can be adjusted to fit the requirements of a given signal.
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Planck–Bessel window, ε = 0.1, α = 4.45; B = 2.16.

Hann–Poisson window, α = 2; B = 2.02[11]

Hann–Poisson window

A Hann window multiplied by a
Poisson window, which has no
side-lobes, in the sense that its Fourier
transform drops off forever away
from the main lobe. It can thus be
used in hill climbing algorithms like
Newton's method.[57] The
Hann–Poisson window is defined by:

where α is a parameter that controls the slope of the exponential.

Other windows

Lanczos window

used in Lanczos resampling
for the Lanczos window,  is defined as 
also known as a sinc window, because:

 is the main lobe of a normalized sinc function
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Sinc or Lanczos window; B = 1.30.[11]

Window functions in the frequency domain ("spectral leakage")

Comparison of windows

When selecting an appropriate
window function for an
application, this comparison graph
may be useful. The frequency axis
has units of FFT "bins" when the
window of length N is applied to
data and a transform of length N is
computed. For instance, the value
at frequency ½ "bin" (third tick
mark) is the response that would
be measured in bins k and k+1 to a
sinusoidal signal at frequency
k+½. It is relative to the maximum
possible response, which occurs
when the signal frequency is an
integer number of bins. The value
at frequency ½ is referred to as the
maximum scalloping loss of the
window, which is one metric used
to compare windows. The
rectangular window is noticeably
worse than the others in terms of
that metric.

Other metrics that can be seen are the width of the main lobe and the peak level of the sidelobes, which respectively
determine the ability to resolve comparable strength signals and disparate strength signals. The rectangular window
(for instance) is the best choice for the former and the worst choice for the latter. What cannot be seen from the
graphs is that the rectangular window has the best noise bandwidth, which makes it a good candidate for detecting
low-level sinusoids in an otherwise white noise environment. Interpolation techniques, such as zero-padding and
frequency-shifting, are available to mitigate its potential scalloping loss.

Overlapping windows

When the length of a data set to be transformed is larger than necessary to provide the desired frequency resolution, a
common practice is to subdivide it into smaller sets and window them individually. To mitigate the "loss" at the edges
of the window, the individual sets may overlap in time. See Welch method of power spectral analysis and the modified
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discrete cosine transform.

Two-dimensional windows

Two-dimensional windows are used in, e.g., image processing. They can be constructed from one-dimensional
windows in either of two forms.[58]

The separable form,  is trivial to compute. The radial form, , which

involves the radius , is isotropic, independent on the orientation of the

coordinate axes. Only the Gaussian function is both separable and isotropic.[59] The separable forms of all other
window functions have corners that depend on the choice of the coordinate axes. The isotropy/anisotropy of a
two-dimensional window function is shared by its two-dimensional Fourier transform. The difference between the
separable and radial forms is akin to the result of diffraction from rectangular vs. circular appertures, which can be
visualized in terms of the product of two sinc functions vs. an Airy function, respectively.

See also

Spectral leakage
Multitaper
Apodization
Welch method
Short-time Fourier transform
Window design method
Kolmogorov–Zurbenko filter

Notes

Mathematically, the noise equivalent bandwidth of transfer function H is the bandwidth of an ideal rectangular filter with
the same peak gain as H that would pass the same power with white noise input. In the units of frequency f (e.g. hertz), it
is given by:
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