Design of an integrated pipeline ADC


Figure 1: LTSPICE BlockFoldingPipeline.asc

Overview


Layout starting library for Electric VLSI system:
Pipeline.jelib
Basic layout library for synthesis:
sclib.jelib
LTSPICE models:
cmosedu_models.txt

Duration


Specification


Target technology: 50nm

(1) Power supply: 1V
This gives minimum power consumption and can be integrated in 50nm technology.

(2) Sampling speed: ft/2, fringosci.

(3) Resolution: 16 bit (20 bit)

(4) Low power

Since the design should be as fast as possible a ringoscillator is used as starting point for clock generation.
A clock divider using always on sample and hold circuits can be incorporated to lower clock frequency.

Description


Starting point is the circuit below which was realized during a practical laboratory.
LTSPICE schematics: (Vorlesung/Einzelvorträge/20xx_PipelineADC/BlockFoldingPipeline.asc using SampleHold.asc, Folder.asc, Comparator.asc
PipeReal.asc

Figure 2: Circuit diagram (Click on picture to see LTSPICE drawing code)

The left shows the sample and hold switches selecting the external signal or the internal residue for seriell conversion.
The top shows the signal path with the second sample and hold after the folder and before the second amplifier.
The signal path is buffered with 0.5pF. The power supply is buffered with 474nF.
The bottom path shows the digital path to compare the input signal.

Modifications:

State of the art


Review of 10 recent pipeline ADC publication from IEEE solid state circuits into References section.
Discuss performance data of these architectures (technology, area, power, speed, resolution).
Discuss basic circuits: Opamp, comparator and sample and hold.

Transistor performance limits



Figure 3: Layout in Electric of 2 3 stage ring oscillators, an inverter for IV curves and an inverter with load for AC analysis

The cell name is: InvChain_5_test{lay} in the library Pipeline.jelib .
As a starting point for the process inverters are used for static IV curves and maximum performance ft and fosc measurements.

Static IV curves for PFET and NFET

The structure Xinv_3x1@3 has 3 PFETS in parallel L=50nm W=250nm and 3 NFETs in parallel with L =50nm and W=175 nm.
Input is pin INDC and output OUTDC.
Measuring a transfer characteristic IDS(VGS) gives Vth, RDSon and IDSmax.

When OUTDC=0V and INDC goes from 0 to 1V the PFET is turned of and Ix(inv_3x1@3:VDD) gives the PFET source drain current.
IDSPmax = -206 uA, Vthp = -300mV, IDSNmax = 316uA, Vthn = 300mV.
RDSPon = U/I = 1V/206uA = 5 kΩ RDSNon = 1V/316uA = 3.16 kΩ
W/L IDSmax VthRDSon VDDmax
PFET 750nm/50nm 206 μ A -300 mV 5 k Ω 1 V
NFET 525nm/50nm 316 μ A 300 mV3.16 kΩ 1 V

AC analysis

Simulation of maximum transistors performance:
NFET: Drain is connected to VDD, transfer characteristic is IDS/IGS.
ftNFET = 68 GHz; ftPFET = 32.9 GHz;

Simulation of inverter performance at 0.5V DC operating point:


OUTAC shows a 3dB corner frequency of 3 GHz with a gain of 20 log(5.3) = 14.6 dB.

ftINVnoload = 36.3 GHz; ftINVloadINV = 16.8 GHz;
f3dBINVnoload = 5.7 GHz; f3dBINVloadINV = 2.7 GHz;

Variation of VDD with midlevel DC operating point:
0.8 V 19 dB; 0.9 V 17 dB; 1.0 V 14.6 dB; 1.1 V 12.9 dB

Feedback resistance 30k and 100k gives 6dB and f3dB= 2 GHz.
Less resistance reduces gain further and increases f3dB.

Ring oscillator performance: frequency and power consumption


It shows 7 GHz oscillation frequency. With 149uA (Ring3) and 447uA (Ring9) power consumption.
The ring oscillator will be used to generate a clock for sampling.
VDD f3 f9 Idd3 Idd9
1V 7.07GHz 7.76 GHz 149uA 447uA
0.9V 6.27GHz 6.89GHz 118uA 354uA

Sampling network thermal noise

\( C \gt 12 \cdot k_B \cdot T \frac{2^{2 B}}{V_{FS}^{2}} \)
kB: Boltzmann constant
T: absolute temperature in Kelvin
B: number of Bits
VFS: Full scale voltage
B Cmin(VFS=3.3V) Cmin(VFS=1V)
8 0.3 fF 0.003 pF
12 80 fF 0.8 pF
16 20.6 pF 206 pF
20 5.28 nF 52.8 nF
24 1.32 uF 13.2 uF
Table: Required C as function of ADC resolution and full scale voltage
Adding 4 bits required an increase in capacitance by a factor of 256.
Decreasing the voltage by a factor of 3.3 increases the capacitance with a factor of 10.

16 bit requires 206 pF at 1V full scale.

To make sure the error of the RC network at 7 Ghz is less than 1/2LSB:

\( R \lt \frac{0.72}{B \cdot f_s \cdot C} \)

fs: Sampling frequency (half period active and switch closed)
B : number of bits
C: sampling capacitance

R (7 GHz, 16 Bit)= 0.031 Ω

B, C fS = 10MHz fS = 100MHz fS = 1GHz
8, 3 fF 3MΩ 300 kΩ 30 kΩ
12, 0.8 pF 7.5kΩ 750 Ω 75 Ω
16, 206 pF 21.8 Ω 2.18 Ω 0.22 Ω
20, 52.8 nF 70 mΩ 70 mΩ
24, 13.2 uF 2.3 mΩ 230 μΩ
Table: Required R as function of ADC resolution and speed for VFS=1V

Since these values are very low and can not be realized, higher values are used and a digital filter or error correction is required to adjust the frequency response.

This process with the measured RDSon in the range of kΩ can easily achieve:
1GHz, 10 Bit;
100 MHz, 12 Bit;
10 MHz, 14 Bit;

Differential Clock


M. J. Myjak, and J. G. Delgado-Frias, “A Symmetric Differential Clock Generator for Bit-Serial Hardware,” The 2005 International Conference on Computer Design, pp. 159-164, Las Vegas, June 2005.

2 ring oscillators can be coupled for a differential clock (circuit DiffClk).

Simulation shows a frequency of 4GHz.

(Layout, schematic and simulation 1h)
This will be used as global clock.

Having only loose coupling and balanced inverters gives a frequency of 6 GHz.
A real load circuit is needed to couple out the signal and see the real frequency.
*** SUBCIRCUIT inv_1x1 FROM CELL inv_1x1{lay}
.SUBCKT inv_1x1 a gnd vdd y
Mnmos@0 y a gnd gnd N L=0.05U W=0.175U AS=0.042P AD=0.027P PS=1.4U PD=0.675U
Mnmos@1 y a gnd gnd N L=0.05U W=0.175U AS=0.042P AD=0.027P PS=1.4U PD=0.675U
Mpmos@0 y a vdd vdd P L=0.05U W=0.25U AS=0.051P AD=0.027P PS=1.55U PD=0.675U
.ENDS inv_1x1

.SUBCKT inv_1x1a a gnd vdd y
Mnmos@0 y a gnd gnd N L=0.05U W=0.175U AS=0.042P AD=0.027P PS=1.4U PD=0.675U
Mnmos@1 y a gnd gnd N L=0.05U W=0.175U AS=0.042P AD=0.027P PS=1.4U PD=0.675U
Mpmos@0 y a vdd vdd P L=0.05U W=0.25U AS=0.051P AD=0.027P PS=1.55U PD=0.675U
Mpmos@1 y a vdd vdd P L=0.05U W=0.25U AS=0.051P AD=0.027P PS=1.55U PD=0.675U
.ENDS inv_1x1

*** TOP LEVEL CELL: DiffClk{lay}
XPFET_1x1@0 C2 gnd vdd C2b PFET_1x1
* XPFET_1x1@1 C3 gnd vdd C3b PFET_1x1
* XPFET_1x1@2 C1 gnd vdd C1b PFET_1x1
XPFET_1x1@3 C2b gnd vdd C2 PFET_1x1
*XPFET_1x1@4 C3b gnd vdd C3 PFET_1x1
*XPFET_1x1@5 C1b gnd vdd C1 PFET_1x1
Xinv_1x1@0 C1b gnd vdd C2b inv_1x1
Xinv_1x1@1 C2b gnd vdd C3b inv_1x1a
Xinv_1x1@2 C3b gnd vdd C1b inv_1x1a
Xinv_1x1@3 C1 gnd vdd C2 inv_1x1
Xinv_1x1@4 C2 gnd vdd C3 inv_1x1a
Xinv_1x1@5 C3 gnd vdd C1 inv_1x1a

Duty cycle is not 50%.

Get the signal out and amplify it with a big driver.
Attaching an inverter to the output decreases the frequency to 3.71048 GHz.
Create a simple equivalent circuit with a pulse/sine input signal.
Xinv_1x1@6 Vx gnd vdd Vx1 inv_1x1
Xinv_1x1@7 Vx1 gnd vdd Vx2 inv_1x1
Xinv_1x1@8 Vy gnd vdd Vy1 inv_1x1
Xinv_1x1@9 Vy1 gnd vdd Vy2 inv_1x1
V2 Vx  0 SINE(0.5 0.5 4.08197G 122.5ps) 
V3 Vy  0 SINE(0.5 0.5 4.08197G 0ps) 

Sample and hold circuit


Coupling of the clock signal.
Signal transfer function.
The sample and hold will charge a capacitor. During active switch time the final voltage value will not be reached.
How to analyze the results?
Previous voltage and delta will give final result.
Ramp has fixed delta voltage.
Generate waveform file to estimate 2 dimensional space.

Folder


Comparator


Calibration


Multiple (3,5) comparators.

References


[1] Murmann, EE315B - Analog Digital Conversion Circuits, https://web.stanford.edu/group/murmann_group/cgi-bin/mediawiki/index.php/Boris_Murmann
[2] Haideh Khorramabadi , EE247 Analog-Digital Interface Integrated Circuits, http://inst.eecs.berkeley.edu/~ee247/fa09/index.html
[3] Baker, ECE 615 CMOS Mixed-Signal IC Design, Spring 2009, http://www.cmosedu.com/jbaker/courses/ece615/s09/lec615.htm
[4] P. E. Allen, D.R. Holberg, CMOS Analog IC Design, http://www.aicdesign.org/scnotes10.html
[1] Yong L.; Michael P. F., "A 1 mW 71.5 dB SNDR 50 MS/s 13 bit Fully Differential Ring Amplifier Based SAR-Assisted Pipeline ADC" Solid-State Circuits, IEEE Journal of, vol.50, no.12, pp. 2901,2911, December 2015
[2] Chen-K.H.; T.C. Lee; "A Single-Channel 10-b 400-MS/s 8.7-mW Pipeline ADC in a 90-nm Technology" Solid-State Circuits, IEEE Asian Conference of, INSPEC Accession Number: 15728345, pp. 1,4, November 2015
[3] Yong L.; Michael P. F., "A 100 MS/s, 10.5 Bit, 2.46 mW Comparator-Less Pipeline ADC Using Self-Biased Ring Amplifiers" Solid-State Circuits, IEEE Journal of, vol.50, no.10, pp. 2331,2341, October 2015
[4] Rohan S.; Frank v. d. G.; K. Bult; "A 12 b 53 mW 195 MS/s Pipeline ADC with 82 dB SFDR Using Split-ADC Calibration" Solid-State Circuits, IEEE Journal of, vol.50, no.7, pp. 1592,1603, July 2015
[5] James L.; Daehwa P.; S. Lee; Masaya M.; Akira M.; "An Ultra-Low-Voltage 160 MS/s 7 Bit Interpolated Pipeline ADC Using Dynamic Amplifiers" Solid- State Circuits, IEEE Journal of, vol.50, no.6, pp. 1399,1411, June 2015
[6] Yanwei W.; X. Peng; Yang D.; M. Liu; "Analysis and design of double nesting gain boosted amplifier in 14 bits 50MS/S pipeline ADC" Solid-State and Integrated Circuit Technology, IEEE International Conference of, INSPEC Accession Number: 14870694, pp. 1,3, October 2014
[7] Manar E. C.; X. Li; S. Kimura; K. Maclean; J. Hu; Mark W.; Matthew G.; Scott K.; Robert P.; Charles K. S.; William B.; "A 12 Bit 1.6 GS/s BiCMOS 2×2 Hierarchical Time-Interleaved Pipeline ADC" Solid-State Circuits, IEEE Journal of, vol.49, no.9, pp. 1876,1885, September 2014
[8] D. Y. Chang; Carlos M.; Denis D.; S. K. Shin; Kevin G.;Thomas T.; H. S. Lee; Kush G.; Matthew S.; "A 21mW 15b 48MS/s Zero-Crossing Pipeline ADC in 0.13µm CMOS with 74dB SNDR" Solid-State Circuits, IEEE International Conference of, INSPEC Accession Number: 14147497, pp. 204,205, February 2014
[9] Jiangfeng W.; C. Y. Chen; T. Li; Lin H.; W. Liu; W. T. Shih; Shauhyuarn S. T.; B. Chen; Chun S. H.; Bryan J. J. H.; Hing T. H.; Steven J.; Loke K. T.; Hung V.; "A 240-mW 2.1-GS/s 52-dB SNDR Pipeline ADC Using MDAC Equalization" Solid-State Circuits, IEEE Journal of, vol.48, no.8, pp. 1818,1828, August 2013