Elektronik 322 Analog-Digital-WandlerProf. Dr. Jörg Vollrath21 Digital-Analog-Wandler |
Länge: 1:02:43 |
0:0:45 Digital Analog Wandler R2R 0:3:10 LTSPICE Simulation 0:5:30 Widerstandsänderungen und Fehler 0:10:5 ADC Architekturen 0:12:6 AD Signalkette 0:19:55 Dual Slope Schaltungsanalyse 0:23:2 Simulation 0:26:53 Ein Schalter mit Transistoren 0:31:3 Zeitmessung mit Zähler 0:33:32 Rechnung Dual Slope, Schaltspannungen 0:38:37 Stromgleichung 0:42:17 Vergleich mit LTSPICE 0:44:6 Integrator 0:50:56 Gleichung des ADC 0:55:32 Schnelligkeit, Bandbreite 0:58:32 1 GHz Zähler, 1:1:25 Anzahl Bits und Frequenz 1:4:32 Flash ADC |
Preamplifier (range adjustment, impedance matching) Anti-alising filter Sampling Quantization Digital coding (error correction, filter) |
|
|
Vin in V | 1 | 2 | 3 | 4 | 5 | 6 |
t1 in ms | 3.85953 | 4.23152 | 4.76959 | 5.61642 | 7.14093 | 10.7025 |
OperationResolution BSpeedPower | cmosedu_models.txt |
Thermometer code | Binary Code | ||||||||
T6 | T5 | T4 | T3 | T2 | T1 | T0 | B2 | B1 | B0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Number of Bits | Maximum Offset | Gain |
4 | 0.0625 · Vref | 16 |
8 | 0.004 · Vref | 256 |
10 | 0.001 · Vref | 1024 |
12 | 0.0025 · Vref | 4048 |
Correct code: | 000000011111111 | Encoded binary code | 1000 |
Sparkle code: | 000000010111111 | Encoded binary code | 1110 |
|
Vref = 1V Vin = 0.6 V Stellen Sie den zeitlichen Verlauf der internen Vergleichsspannung Vout des SAR ADC dar. |
Set MSB to 1: 100000 Loop until LSB set: Compare DAC output with analog input: If DAC output > analog input reset current bit. Try and set next bit. End Loop Blue line shows analog input voltage. Green shows output of internal DAC. Red shows output code with MSB first. |
Der Wertebereich verdoppelt sich. Das Signal-Rausch Verhältnis ändert sich, da nur noch halb so viele FFT Frequenzen zur Verfügung stehen. \( 20 log \left( \sqrt{2} \right) = 10 log \left( 2 \right) = 3 dB \) Das letzte Bit hat einen Rauschanteil. |
Nyquist ADCOversamplingfCLK = OSR · 2 · fbw Clock frequency is much higher than bandwidth. Pulse count Modulation (PCM)Predictive CodingQuantize difference of the signal Sigma delta converter |
|
|
|
Internal voltage levels:The voltage V(INT n+1) at clock cycle n+1 is:\( V_{int n+1} = V_{int n} + \frac{\delta t}{C} \left( \frac{ V_{not(Dout)} - V_{int n}}{R} + \frac{V_{in} - V_{int n}}{R} \right) \) \( V_{int n+1} = V_{int n} + \frac{\delta t}{C \cdot R} \left( V_{not(Dout)} + V_{in} - 2 \cdot V_{int n} \right) \) \( \delta t \) is the period of the clock. \( V_{Dout} \) in a real logic circuit is 0V or VDD. These equations are used for a high level simulation. High level simulation: 1st order sigma delta simulation Since Vint has to stay between 0V and VDD: \( \frac{\delta t}{C \cdot R} 2 V_{DD} \lt V_{DD} \) \( C \cdot R \gt \frac{2}{f_{sample} } \) \( \frac{1}{C \cdot R} \lt \frac{f_{sample} }{2} \) The bandwidth limit of RC has to be smaller than fsample/2. The bandwidth limit of RC has to be greater than the interested bandwith. fsample/2/OSR \( 2 \pi f_{bw} \lt \frac{1}{C \cdot R} \lt \frac{f_{sample} }{2} \) |
|