Elektronik 320 Datenwandler KennwerteProf. Dr. Jörg Vollrath19 Datenwandler |
Länge: 1:02:43 |
0:0:0 DAC Eigenschaften 0:1:18 Kennlinie und Tabelle DAC 0:3:3 Operationsverstärker für Anpassung Ausgangsbereich 0:4:50 Offset 0:6:54 Gain Error 0:8:45 LSB real 0:10:0 DAC Sinussignal 0:13:10 Formel zur Erzeugung eines Sinussignals 0:16:29 Sinus Lookup Table 0:18:22 Wie sehen Signale bei verschiedene Frequenzen aus 0:19:32 Aliasing, Perioden = 31 und = 1 sehen bei 32 Abtastpunkten gleich aus 0:21:50 Beispiel: LSB, Vout=2 V mit Vref=3.3V N=10 Bit 0:23:10 LSBabs 0:27:30 Genauigkeit LSB 0:30:20 Codeberechnung 0:38:30 Kalibrierung DAC 0:41:30 Konvertierung in Dualzahl 0:44:30 ADC Kenngrößen 0:45:58 ADC Kennlinie und Tabelle 0:50:0 Beispiel LSB 0:50:50 LSBabs und LSBrel 0:53:25 Kalibrierung ADC 0:55:52 Kennlinie, Offset, Gain Error 0:58:1 Beispiel Multimeter 0:59:35 Maximaler und minimaler Code 1:3:20 LTSPICE Model Skalierbarer 4-Bit DAC 1:6:5 LTSPICE Model Skalierbarer 4-Bit ADC 1:6:35 LTSPICE Test |
Step size:
\( LSB = \frac{V(111) - V(000)}{2^{3}-1} = 1 V \) The step size between 2 successive codes is normalized with LSB and calculated as DNL: \( DNL(n) = \frac{ V(n) - V(n-1) - LSB}{LSB} \) Since the LSB is calculated using the first and last code: \( \sum DNL_i = 0 \) |
Step size:
\( LSB = \frac{V(111) - V(000)}{2^{3}-1} = 1 V \) The step size between 2 successive codes is normalized with LSB and calculated as DNL: \( DNL(n) = \frac{ V(n) - V(n-1) - LSB}{LSB} \) Since the LSB is calculated using the first and last code: \( \sum DNL_i = 0 \) |
Step size: \( LSB = \frac{V(111) - V(000)}{2^{3}-1} = 1 V \) The difference between real and ideal curve is normalized with LSB and calculated as INL: \( INL(n) = \frac{ V_{real}(n) - V_{ideal}(n)}{LSB} \) Since the INL is calculated using the first and last code: INL(000) = 0; INL(111) = 0; |
Step size: \( LSB = \frac{V(111) - V(000)}{2^{3}-1} = 1 V \) The difference between real and ideal curve is normalized with LSB and calculated as INL: \( INL(n) = \frac{ V_{real}(n) - V_{ideal}(n)}{LSB} \) Since the INL is calculated using the first and last code: INL(000) = 0; INL(111) = 0; \( INL(n) = \sum_{i=0}^n{ DNL(i)} \) |
RampeOffset, Gain, INL, DNL Settling time << Signal to noise ratio |
|
Quantization error is the difference between the quantized signal and the original signal. The quantization error stays between \( \pm \frac{1}{2} LSB \) for the input range. |
|
First approximation: Vsp: signal peak full scale voltage Vqp: peak quantization noise voltage \( SNR \approx 20 \cdot log\frac{V_{sp}}{V_{qp}} \) \( SNR \approx 20 \cdot log\frac{LSB \cdot 2^{N}}{LSB} dB \) \( SNR = 20 \cdot N \cdot log(2) \) \( SNR = 6.02 \cdot N dB\) |
|
Second approximation: \( SQNR = 6.02 \cdot N dB + 1.76 dB \) Using integral over quantization error function. \( \overline{\epsilon_{q}^2} = \frac{1}{T} \int_{- \frac{T}{2}}^{+\frac{T}{2}} ( k \cdot t )^2 dt \) |
|
Signal to Quantization Noise Ratio: \( SQNR = 6.02 \cdot N dB + 1.76 dB \) Signal to noise and distortion ratio: SINAD without distortion: SINAD = SQNR = 6.02 N dB + 1.76 dB Effective Number of Bits: \( ENOB = \frac{SINAD - 1.76 dB}{ 6.02 dB} \) |
N | SQNR [dB] |
8 | 50 |
12 | 74 |
16 | 98 |
20 | 122 |
|
The JavaScript simulator can be used: ADCharacteristic 8-bit ADC, 0.5 V Amplitude, 0.5 V offset, 17 periods, 4096 points FFT. Lowest frequency shows in this simulation DC magnitude. Signal magnitude is -9 dB for frequency 17: 500 mV amplitude gives \( 20 \cdot log \left( \frac{0.5}{\sqrt{2}} \right) = -9 dB \) Total noise is -58 dB which is -9 dB - 6.02*8 dB -1.76 dB = -58 dB using 8 bits. Since the noise is distributed over 4096 bins the noise is distributed around: -58 dB - 10 log (2048) dB = -91 dB. Unfortunately there is a lot of noise, so it is difficult to estimate the -91 dB. |
|