Interface Electronics06 DAC Architectures and ErrorProf. Dr. Jörg Vollrath05 DAC Architectures |
Länge: 01:06:27 |
0:2:25 Charge scaling DAC 0:5:36 Binary split array charge scaling DAC 0:8:25 Subcircuit 0:10:53 Equivalent circuit 0:14:10 VD1 Second circuit 0:23:26 Vint1 0:26:46 LTSPICE simulation 0:31:1 DAC Errors 0:31:27 Mismatch and Probability Density 0:33:16 Gaussian distribution 0:34:4 Realization 0:34:31 Unit R-string mismatch dDNL = dR 0:36:56 INL with mismatch dINL = 0.5 sqrt(2^B) dR 0:43:30 Binary weighted dINL = 0.5 sqrt(2^B) dR 0:46:0 dDNL = 2 * dINL 0:47:3 Summary of INL, DNL with mismatch 0:53:4 LTSPICE Simulation with errror 0:57:17 Digital error correction and calibration 0:59:54 Example start 1:1:43 Calibration 6 codes 1:3:26 Calibration 4 codes 1:4:44 Lookup table codex and code 1:6:53 DAC digital calibration summary |
A real 3-Bit resistor string DA converter with Vref= 4V has some error due to R mismatch.
The switches are closed when the control signal is ‘1’. b signals are the inverted signals.
What is the maximum output voltage and the average step size? (3 points)
Fill the table for the transfer function, the INL and DNL ?
Vmax = Vref/800*700 = 3.5V
LSB = 4V/8 = 0.5V
|
Real components have random variations Discrete resistors: 0.1%, 1%, 10% Integrated resistors: Manufacturing step variations Model for random variations: Probability density function Constant probability of variation. Mixing of probability functions gives a gaussian distribution |
Equation: \( p(x) = \frac{1}{\sigma \sqrt{2 \pi }} e^{- \frac{1}{2} \left( \frac{x-\mu}{\sigma} \right)^2 } \) µ expected value σ standard deviation σ2 variance This distribution has no bounds. The higher the number of components, more components are out of a certain bound. Manufacturing a resistance or capacitance will also result in variations of value. This causes INL and DNL errors for data converter and can lead to bad faulty devices. Width of two, four and six standard deviations have 68.27%, 95.45% and 99.73% of the population. |
In integrated circuits all elements have a gaussian distribution around the designed value. Since good data converters must meet strict requirements for INL and DNL, high variations of circuit elements can cause bad INL and DNL. What variation of circuit elements can be tolerated? How does mismatch influence INL and DNL?
Example: 0.1% resistor tolerance |
Only random error: Iref: reference current Rnom: nominal resistance \( \Delta_i = I_{ref} \cdot R_i \) \( DNL_{i} = \frac{\Delta_i - \Delta}{\Delta} = \frac{ R_i - R_{nom}}{R_{nom}} \approx \frac{dR}{R_i} \) \( \sigma_{DNL} = \sigma_{R} \) 1% tolerance in resitance gives 1% = 0.01 DNL. |
\( \sigma_{INL}^2 = (1 - r)^2 \cdot \sigma_{A}^2 + r^2 \sigma_{B}^2 \)
\( \sigma_{INL}^2 = (1 - r)^2 \cdot x \cdot \sigma_{\epsilon}^2 + r^2 \cdot (N-x) \cdot \sigma_{\epsilon}^2 \)
\( \sigma_{INL}^2 = x \cdot \left( 1 - \frac{x}{N} \right) \cdot \sigma_{\epsilon}^2 \)\( \sigma_{INL}^2 = (x - 2 \cdot x \cdot r + x \cdot r^2 + r^2 \cdot N - x \cdot r^2) \cdot \sigma_{\epsilon}^2 \) \( \sigma_{INL}^2 = (x - 2 \cdot \frac{x^2}{N} + \frac{x^2}{N} ) \cdot \sigma_{\epsilon}^2 \) \( \sigma_{INL}^2 = (x - 2 \cdot \frac{x^2}{N} + \frac{x^2}{N} ) \cdot \sigma_{\epsilon}^2 \) |
Only random error: \( \sigma_{INL}^2(x) = x (1 - \frac{x}{N}) \cdot \sigma_{\epsilon}^2 \) \( \sigma_{INL}(x) = \sqrt{x (1 - \frac{x}{N})} \cdot \sigma_{\epsilon} \) Maximum: \( \frac{\sigma_{INL}^2}{dx} = 0 \) \( 1 - \frac{2 x}{N} = 0 \) \( x = \frac{N}{2} \) \( \sigma_{INLmax} = \sqrt{\frac{N}{2} (1 - \frac{N}{2 \cdot N})} \cdot \sigma_{\epsilon} \) \( \sigma_{INLmax} = \frac{1}{2} \sqrt{ N } \cdot \sigma_{\epsilon} = \frac{1}{2} \sqrt{ 2^{B} -1 } \cdot \sigma_{\epsilon} \) |
Example: N = 63 |
INL same as unit element INL. \( \sigma_{INLmax} = \frac{1}{2} \sqrt{ 2^{B} -1 } \cdot \sigma_{\epsilon} \approx \frac{1}{2} \cdot 2^{\frac{B}{2}} \cdot \sigma_{\epsilon}\) Switching in the center: Half devices on, half minus one devices off DNL: Switching at center position: 011111..100000 \( \sigma_{DNLmax}^2 = \left( 2^{B-1} - 1 \right) \cdot \sigma_{\epsilon}^2 + \left( 2^{B-1} \right) \cdot \sigma_{\epsilon}^2 \) \( \sigma_{DNLmax} \approx 2^{\frac{B}{2}} \cdot \sigma_{\epsilon} = 2 \sigma_{INLmax} \) |
Binary weighted topologyR2R:\( \sigma_{INLmax} \approx \frac{1}{2} \cdot 2^{\frac{B}{2}} \cdot \sigma_{\epsilon}\) DNL: \( \sigma_{DNLmax} \approx 2^{\frac{B}{2}} \cdot \sigma_{\epsilon} \) \( \sigma_{DNLmax} \approx 2 \sigma_{INLmax} \) B, 2B, 3B elements |
|
Unit element topologyR-string:\( \sigma_{INLmax} \approx \frac{1}{2} \cdot 2^{\frac{B}{2}} \cdot \sigma_{\epsilon}\) DNL: \( \sigma_{DNLmax} = \sigma_{\epsilon} \) 2B elements |
Undercutting Non uniformities Unit elements Ratio area to edge is constant. Common centroid design Systematic vertical and horizontal variations cancel out. Dummy elements |
Capacitances |
Resistors |
|
|
Lookup table, equation
|
|
Lookup table, equation
|
|
Lookup table, equation
|
|
Lookup table, equation
|
|