Since Vint has to stay between 0V and VDD:
\( \frac{\delta t}{C \cdot R} 2 V_{DD} \lt V_{DD} \)
\( C \cdot R \gt \frac{2}{f_{sample} } \)
\( \frac{1}{C \cdot R} \lt \frac{f_{sample} }{2} \)
The bandwidth limit of RC has to be smaller than fsample/2.
The bandwidth limit of RC has to be greater than the interested bandwith. fsample/2/OSR
\( 2 \pi f_{bw} \lt \frac{1}{C \cdot R} \lt \frac{f_{sample} }{2} \)
On the left the difference of V(in) and V(D) is integrated and then
compared with V(CMP). The comparator operates with the clock frequency and
gives for each clock cycle a new value.
A simple passive first order sigma delta converter uses resistors and capacitances.
This circuit is according to Baker, "CMOS integrated cicuits", Figure 6.4
Example: First order passive Sigma Delta Modulator
The circuit with R = 1 kΩ, C= 20 nF is operated with VDD = 1 V,
VCMP = 0.5 V and fS = 1 MHz.
What is the maximum allowed input voltage?
What is the cut-off frequency of the RC input low pass?
Calculate vout(t) for 4µs if vin=0.3V. The starting value for vint=VCM and vout=0V.
Assume a constant current through R for a sampling cycle.
Comparing the equation for the internal voltage vint with the general signal
and noise transfer function gives:
\( V_{int}(f) = A(f) \cdot ( V_{in} - V_{out} \cdot B(f) ) \)
\( B(f) = 1 \)
\( A(f) = \frac{1}{j \omega C R + 2} \)
\( V_{out}(f) = V_{in} \frac{1}{j \omega C R + 3}
+ E(f) \frac{j \omega C R + 2}{j \omega C R + 3} \)
\( V_{out}(f) = \frac{V_{in}}{C R} \frac{1}{j \omega + \frac{3}{R C}}
+ E(f) \frac{j \omega + \frac{2}{R C}}{j \omega + \frac{3}{R C}} \)
Noise shaping
Signal pole: ω=3/(RC)
Noise zero: ω=2/(RC)
Noise pole: ω=3/(RC)
Position fclk
Position fbw = 3/(2 π R C)
Noise is digitally filtered.
\( \epsilon_q = \frac{LSB}{\sqrt{12}} \)
\( - 20 log \sqrt{12} = -10.8 dB \)
Digital filter and decimator
SINC Filter
Filter order:
SINC, SINC2, SINC3
The order of the filter has to be one more than the sigma delta
modulator to realize the full signal to noise benefit.
A decimating Sinc2 filter has the following schematic
with 2 integrators and 2 differentiators:
How to physically realize the filter?
Width of the registers?
Calculating Signal to noise ratio
\( V_{noise,RMS}^{2} = 2 \int_0^{BW}{|NTF(f)|^2|V_{Qe}(f)|^2} df \)
Quantization noise spectral density divides the quantization error with sampling frequency:
\( |V_{Qe}(f)|^2 = \frac{V_{LSB}^{2}}{12 f_{sample}} \)
Transfer function:
\( V_{out}(f) = STF(f) v_{in} + NTF(f) V_{Qe}\)
First order passive modulator :
\( V_{out}(f) = \frac{V_{in}}{C R} \frac{1}{j \omega + \frac{3}{R C}}
+ \frac{E(f)}{R C} \frac{j \omega R C + 2}{j \omega + \frac{3}{R C}} \)
Since signal transfer function and noise transfer function have the part:
\( STF(f) = \frac{1}{j \omega + \frac{3}{RC}} \)
This cancels out for signal to noise ratio.
Calculating Signal to noise ratio (continued)
\( V_{noise,RMS}^{2} = 2 \frac{V_{LSB}^{2}}{12 f_{sample}} \int_0^{BW}{(2 \pi f R C + 2)^2} df \)
\( V_{noise,RMS}^{2} = 2 \frac{V_{LSB}^{2}}{12 f_{sample}} \left( {(2 \pi R C )^2} \frac{BW^3}{3}
+ 4 \pi R C \frac{BW^2}{2} + 4 BW \right) \)
Sinc-shaped lowpass filter:
\( BW = \frac{f_{sample}}{2 OSR} \)
First part only:
\( V_{noise,RMS}^{2} = \frac{V_{LSB}^{2}}{12 } {(2 \pi R C)^2} \frac{f_{sample}^2}{12 OSR^{3}} \)
\( SNR = 20 log\frac{V_{signal,rms}}{V_{noise, rms}} \)
\( SNR = 6.02 N + 1.76 - 20 log \frac{(2 \pi R C) f_{sample}}{\sqrt{12}} + 20 log OSR^{\frac{3}{2}} \)
\( SNR = 6.02 N + 1.76 - 20 log \frac{(2 \pi R C) f_{sample}}{\sqrt{12}} + 30 log OSR \)
With no oversampling signal to noise ratio decreases by:
\( d SNR = - 20 log \frac{(2 \pi R C ) f_{sample}}{\sqrt{12}} \)
The maximum value for fRC = 1 / (2 π R C) = 0.5 f sample .
\( d SNR = -20 log(\frac{2}{\sqrt{12}}) = 4.77 dB \)
With larger oversampling rates signal to noise ratio improves by 30 log 2 = 9 dB, 9 dB / 6 dB = 1.5 bits for doubling OSR.
Increasing signal to noise with oversampling
Quantization error:
\( SNR = 6.02 B dB + 1.76 dB\)
Averaging:
\( SNR = 6.02 B dB + 1.76 dB + 10 \cdot log( OSR ) \)
Increased Resolution:
\( B = \frac{10 \cdot log( OSR )}{6.02} \)
1st order sigma delta
\( SNR = 6.02 B dB + 1.76 dB - 5.17 dB + 30 \cdot log( OSR ) \)
Increased Resolution:
\( B = \frac{30 \cdot log( OSR ) - 5.17 }{6.02} \)
2nd order sigma delta
\( SNR = 6.02 B dB + 1.76 dB - 12.9 dB + 50 \cdot log( OSR ) \)
Increased Resolution:
\( B = \frac{50 \cdot log( OSR ) - 12.9 }{6.02} \)
General limit
\( SNR_{max} = 10 \cdot log\left( \frac{3(2n+1)}{2 \pi^{2n}} OSR^{2n+1}\right) dB \)
\( SNR_{max} = 10 \cdot log\left( \frac{3(2n+1)}{2 \pi^{2n}}\right)
+ 10 \cdot (2 \cdot n + 1) \cdot log\left( OSR\right) dB \)
OSR: oversampling rate
n: order of sigma delta modulator
Graph increasing signal to noise with oversampling
Signal to noise, FFT, transfer characteristic and oversampling
Quantization noise is spread over the number of FFT bins NFFT:
\( \Delta SNR = 10 log\frac{N_{FFT}}{2} \)
Averaging can improve signal to noise ratio
FFT: Half number of points, oversampling with ratio of OSR = 2, reduction of noise
\( \Delta SNR = 10 log OSR \)
Increase of number of bits: OSR = 2 gives Δ SNR = 3 dB is 1/2 bit
Example: 8-bit signal with 4-bit noise amplitude.
Signal: \( V_{rms} = \frac{V_{amplitude}}{\sqrt{2}} \)
Noise: Vrms = VPP/6 = Vamplitude/3
Averaging (OSR)
Bits
Max value
ENOB
1
8
255
5
4
10
1023
6
16
12
4095
7
256
16
65355
9
Reference: CMOS Analog Circuit Design, Allen, Holberg
Chapter 10.9: Oversampling Converters
[56] Single loop 7th order 118 dB (19 dB)
[54] Single loop 5th order 20 bit: Thomsen, Bemades,
"A digitally Corrrected 20-bit Delta Sigma Modulator",
ISSCC, 194-195, Feb 1994
[60-64] 3rd order: 2-1 MASH
Longo, Copeland, "A 13-bit ISDN-Band Oversampled ADC..", CICC, pp.21.2.1-21.2.4, Jan 1988
Williams, Wooley, "A Third order Sigma-Delta..", JSSC, Vol 29. No. 3, pp.193-202,Mar 1994
Yin, Stubbe, Sansen, "Av16-bit 320 kHz CMOS ADC..", JSSC, Vol. 28, No.6, pp.640-647, June 1993
Rabii, Wooley, " A 1.8-V 0.8um CMOS ADC", JSSC, Vol 32., No. 6, pp.783-796, June 1993
Brandt, Wooley, "50MHz 12b 2MHz ADC", JSSC,Vol. 26, No. 6, pp. 1746-1756, Dec 1991
[65-67] 4th order: 2-2 MASH
Tenhunen, "An oversampled ..", ISCAS, pp. 3279-3282, May 1990
Ritoniemi et. al., "A Stereo Audio..", JSSC, Vol. 29, No. 12, pp. 1514-1523, Dec 1994
Fujimori et al., "A 5-V 111dB dynamic range", JSSC, Vol. 32, No. 3, pp.329-336, Mar 1997
[70] 6th order: 2-2-2 MASH
Dedic, " A sixth order", ISSCC Dig. Tech. Papers, pp. 188-189, Feb 1994
[30] MASH Decimator: Candy,Temes, oversampling Delta-Sigma Data Converters. IEEE Press